Part 2. Protocols for Studies with a Control and One Treatment

Material in Part 2 presents the theory and application for experiments with single treat-
ment and control groups (i.e., v = t and c¢). An array of tests are given to assess model
assumptions under each of the sampling protocols. The estimation theory for each of the five
protocols follows. Data for the general numerical example (provided in Chapter 1.3) are used
to illustrate the computations. Other points are illustrated using the output from program
RELEASE.

2.1. Models, Hypotheses, and Tests: An Overview

2.1.1. Overview of Hypothesis Tests

The strategy we recommend in analysis of release-recapture data is to select the most
biologically reasonable, parsimonious, statistical model for the data. This is a generally
accepted basis for a good model (see McCullagh and Nelder 1983). Inferences about treat-
ment effects and other parameters are then based on that model. The set of reasonable
models to consider is determined by a priori reasoning (logic) based on the nature of the
study. In ecological studies, however, logic alone is usually insufficient to specify a single
(unique) model as the model for the data. Instead, statistical hypothesis tests must be used to
determine if a model fits the data and to determine the simplest model, from an a priori
sequence of models, that is most appropriate for the data.

Three major tests are used in this process: TEST 1, TEST 2, and TEST 3. Table 2.1
summarizes some aspects of these tests. If sample sizes are large enough, each test statistic is
- distributed as a chi-square statistic. Each test is computed as a series of independent, chi-
square test statistics which, added together, give the overall test; however, the separate test
components are often of more interest than their sums.

TEST 1, as an overall test, tests the null hypothesis, Hy, “there is no treatment effect,”
versus the alternative, H,, “there is a treatment effect.” Treatment effects are defined in
terms of differences in the parameters ¢; and p; between treatment and control groups. TEST
1 is computed on the basis of summary statistics from each treatment group.

TESTs 2 and 3 are goodness of fit tests applicable to an individual set of release-
recapture data. If there is only one group of releases (e.g., only controls, or only turbine fish,
or fish of only one age or sex group), TESTs 2 and 3 are still computable; however, TEST 1
does not exist unless there are two or more treatment groups. The sum of TESTs 2 and 3 is
the fully efficient goodness of fit test for Jolly-Seber capture-recapture data.
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Table 2.1. ~ Summary of three types of statistical tests for the four capture history protocols and
associated models.

TEST 1 Summary statistics from the experimental groups are used to test for overall treatment effects.
TEST 1 is computed as a series of contingency table tests that allow detailed interpretation of
the results. Tests of this form have roots in the publications by Brownie and Robson (1976)
and Pollock (1981a). Details of this test are given in Table 2.3.

Hy: All parameters ¢, and p; are the same across treatment groups.
H,: At least some parameters differ between or among groups.

TEST 2 Summary statistics from a single treatment group are used to test for goodness of fit of the
model to the data. TEST 2 is conducted separately for each group and is computed as a series
of tests that allow a detailed interpretation of the results. There are many ways to compute this
test sequence; we use contingency tables. This test can be most directly traced back to Robson
and Youngs (unpublished report, 1971), but it also appears in papers by Seber (1970), Brownie
and Robson (1976), Brownie et al. (1978, 1985), Balser (1984), and Pollock et al. (1985).
Details of this test are given in Table 2.4.

H,: The parameters ¢ and p; are specific to sampling occasions or sampling sites within each
group.

H,: The model does not fit the data. There may be a wide variety of reasons for this,
including tagging effects and differential behavior.

TEST 3 Data from the full m-array for a single group are used to test for parameters that are specific to
individual capture histories. TEST 3 is potentially computed as a large series of contingency
tables; however, a great deal of pooling is usually required for most data sets. This test was
developed by Pollock et al. (1985). Details of this test are given in Table 2.5.

H,: The parameters ¢y and p; do not depend on the capture histories of fish released on any
release occasion.

H,: Some of the parameters ¢, and p; are dependent on the capture histories of fish in a given
release; this implies that the corresponding subcohorts among which capture and survival rates
differ should not be pooled (Table 1.3 indicates the nature of those subcohorts).

In following sections we elaborate on these tests, outlining their components, how they
are computed under any given protocol, and some idea of their meaning. Under the complete
capture history protocol, all components of TESTs 1, 2, and 3 can be computed. Under the
first capture history protocol, TESTs 2 and 3 do not exist (i.e., cannot be computed) and some
components of TEST 1 cannot be computed. '
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The material presented in Part 2 is complex and extensive. It is difficult to understand
fully the various separate ideas until one comprehends the “big picture.” Yet, that
comprehension requires starting somewhere to learn the various separate components of
models, protocols, hypotheses, tests, and estimators. Consequently, readers may find it useful
to refer back to Chapter 2.1 as they study the rest of Part 2.

2.1.2. Sequence of Treatment Effects Corresponding to TEST 1

For any study of turbine mortality involving a treatment and control group and &
release-recapture dams, the same types of parameters underlie the sample data: ¢,;, ¢y2, ...,
$uk-1 and Pya, .., Pok-1, Puk, fOr v = t or c. Only the data collection protocols and the number
(k) of dams involved may vary. These two factors (i.c., the actual data taken) determine the
survival and capture probabilities that that can be estimated, and the statistical tests that can
be computed.

In any experiment, one wants to test for the nature and extent of treatment effects.
When passage through a dam structure is the treatment, one wants to test hypotheses about
equality of treatment and survival rates in the controls. It is also necessary to test for
differences in capture probabilities (e.g., does pi» = p.2) to reach valid conclusions about
effects on survival rates. Because of the spatial ordering of survival rates and recapture sites,
there is a logical sequence of hypotheses to test concerning possible treatment effects. Table
2.2 is a representation of the corresponding sequence of possible hypotheses about how the
treatment affects the parameters.

Table 2.2. ~ A summary is shown of specific hypotheses that are relevant to determining the extent of the
treatment effect and thereby to selecting an appropriate model. Notation: E means that the parameter is
assumed to be equal for ¢ and ¢; D means that the parameter is allowed to differ for ¢ and c.

Damj = 1— 2 — 3 — 4 — k-1— k
Model $ Pa ) Ps # P4 — Pra [ D

H, E E E E E E — E E
Hy, D E E E E E - E E
Hy,p D D E E E E - E E
Hyy D D D E E E - E E
H,, D D D D E E - E E
Hy, D D D D D E N E E
Hy i, D D D D D D - D E
Hyyy D D D D D D - D D
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The simplest model (i.e., statistical) hypothesis, denoted H, specifies that there are no
treatment effects; thus, all survival and capture parameters are equal (E) between treatment
and control groups. For hypothesis H4, only ¢;; and ¢, differ (D); no other parameters are
affected by treatment. In most turbine studies, it has been implicitly assumed that H,4 applied,
but this hypothesis has rarely been tested because the data that would allow such a test have
not been collected. Hypothesis Hy, means the underlying parameters

&1, ¢o1 may be different, and

Pi2; Do2 may be different,
while

d"l’ ¢3) ey ¢Ic-1
and

D3s «s Pk1s Pk

are the same for treatment and control.

Hypothesis Hy., 4 represents the case where a treatment effect (on survival, capture, or
both rates) persists at least to dam k. We choose to denote the final hypothesis in the
sequence this way even though ¢,; and p, are not separately estimable under any sampling
protocol. Thus, technically, we should write Hy, o and define 6 = ¢ 1p;. Instead, we adopt
the convention that under Hy_, 4 one must interpret ¢;.; as meaning the product ¢_3pg. Under
Hy.y 4 all identifiable parameters are allowed to be different between treatment and control
groups.

TEST 1 is conveniently computed as a sequence of simple chi-square tests. Components
of TEST 1 are named in Table 2.3 and related hypotheses are given in Table 2.2,

The interpretation of the individual components in TEST 1 could differ from that given
here. Other sequences of hypotheses describe possible treatment effects. For example, one
might have one or more survival rates differ by treatment but have all capture rates equal;
thus, the most general model would be

¢kf¢m; i= 1;""k'13
Pt = Pess i=2,...,k.

The same sequence of tests could be carried out, but the corresponding H, and H, would
have a different interpretation. There are no simple closed-form tests or estimators for this
model. Efficient inference methods for hypotheses such as those above must be based on
numerical optimization procedures (using, e.g., program SURVIV, White 1983). In other con-
texts, such as testing data sets for male versus female (Brownie et al. 1985, Chapter 5), the
separate components of TEST 1 are not of individual interest.

Table 2.2 presents hypotheses about the survival and capture parameters. These
hypotheses by themselves do not specify a “model.” A model here means a sampling distribu-
tion for actual data. Consequently, a model incorporates aspects of both the sampling proto-
col and a hypothesis about the underlying parameters. All tests of hypotheses take the form of
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Table 2.3. — Explanation of TEST 1: its components, their identification, hypotheses tested, and
computability of components by capture history (CH) protocol. The index v ranges over treatment
groups, e.g, v = ¢ and ¢ for treatment and control groups, respectively. There are 2k - 3 test components

*k=>2).
Computability under different protocols
Hypothesis Partial CH
Summary

Component statistics Alter- Complete Scheme Scheme First  Unk.
code used Null  native CH A B c® o
TEST 1.R1 R, g H, H, Yes Yes Yes Yes Yes
TEST 1.72 Tya,Mya Hyy H,, Yes Yes Yes Yes Yes
TEST 1.R2 Rya,1es H,, Hyy Yes Yes Yes No No
TEST 1.73 Tes,mmes Hjyy H,, Yes Yes Yes Yes Yes
TEST 1.R3 R,s,1s H,, Hgy Yes Yes No No No
TEST 1.7i T,y Hiag Hy, Yes Yes Yes Yes Yes
TEST 1.Ri Ryry H;, Hyy Yes Yes No No No
TEST 1.7k - 1 TyxasMyxa Hy a4 Hyp Yes Yes Yes Yes Yes
TEST 1Rk -1 Ryya,lvx1 ) H)‘.“, H)(_1¢ Yes Yes No No No

3For partial capture history scheme B, all TESTs 1.T¢ are computable, however, only 1.R1 and 1.R2 are
computable of the 1.Ri series; also, the exact meanings of the null and alternative hypotheses change when some
components of TEST 1 drop out.

bFor the first capture history protocol, the computable components are 1.R1 and 1.74,i = 2, .., k- 1.

For the unknown capture history protocol, the computable components are 1.R1 and 1.T%,i = 2, ..., k - 1;
also, these tests (hence, all of TEST 1) are only approximations under the unknown capture history protocol.

comparing two models: the sampling model under the null hypothesis versus that under the
alternative hypothesis. Not all hypotheses in Table 2.2 are testable under all protocols, as
shown in Table 2.3.

The simulated treatment-control data summarized in Tables 1.5 and 1.6 are used to
illustrate TEST 1. Only the summary statistics Ry, 7, @ = 1, ..., k- Land my;, 24, i = 2, ..,
k - 1 are used in TEST 1. Test components are based on the following tables:
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TEST1Ri,i=1,..,k-1 TEST 1.7i,i = 2, .., k-1
totals totals
i Re-rg | Ry my g T
s Ryi-r:| Ry My 24 | Tx

For this example, one can easily construct these 2 X 2 contingency tables with the data from
Tables 1.5 and 1.6:

TEST TEST
1.R1 1.72
4,395 24,605 1,104 3,291
4,075 25925 1,029 3,046
1.R2 173
136 935 260 3,167
128 872 249 2,925
1.R3 ‘ 1.74
31 219 1,924 1,274
32 203 1,762 1,195
1.R4 1.75
102 1,760 644 732
93 1,584 616 672
1RS5
26 590
19 571
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The chi-square test statistics and the overall TEST 1 results, in appropriate order, are

Hypothesis
TEST  Null Alternative _x*  df P
1.R1 H, H,, 2963 1 0.000
1.72 H,, H,, 002 1 0.887
1R2  Hy  Ha 001 1 0920
173  Hy  Hs, 015 1 0699
1R3  H,  Hs 016 1 0689
1.74 Hgyy H,, 021 1 0.647
1.R4 Hy, Hyy 001 1 0.920
175  Hy  Hs 028 1 0600
1.R5 Hsg, Hg, 084 1 0.359
TEST1 H, Hg, 3131 9 <0.001

If the individual hypotheses in this sequence make biological sense, this sequential testing is
valuable. (This example is discussed further in Chapter 2.4.)

The proportion of R,; fish released at site i that are ever recovered is r,;/R,. TEST 1.Ri
tests the equality of the expected proportion recaptured for treatment and control. That is,
TEST 1.Ri compares

Iy d Tei
—_— n —
Ry " Ra

to see if they are so different that one should believe different survival or capture rates are
applicable to the treatment and control fish after their release at site i.

TEST 1.7i is also comparing two proportions, namely



2.1. MODELS, HYPOTHESES, AND TESTS: AN OVERVIEW )

The totals T,; are the numbers of fish known to be alive, at risk of capture, at site i. Of the
total T4, m,; is the number of fish actually caught at site i, If treatment and control fish have
the same survival and capture rates at, and after, site i, then these proportions should not differ
significantly. Conversely, rejection with TEST 1.7i means there is some treatment effect evi-
dent at or after site i.

2.1.3. Goodness of Fit Testing Within a Treatment Group

2.1.3.1. TEST 1. - TEST 1 is computed across the different treatment groups. It is also
possible to compute separately, for each group, a goodness of fit test to the general assump-
tion of site- (time-) specific parameters. Examples of the types of factors that cause TESTs 2
and 3 to reject are heterogeneity of parameters over fish (caused, e.g., by fish size), failure of
the assumption of independent fish fates, and behavioral response to capture and subsequent
release (in some types of studies). Goodness of fit is especially critical in studies where new
animals are released at each site or time. In such studies, new releases might be different from
previously marked animals. This situation is not encountered commonly in fish-turbine sur-
vival experiments, but is relevant in studies in which simultaneous estimation of mortality rates
at several dams is attempted (i.e., system-wide studies).

2.1.3.2. TEST 2. - TEST 2 is based on the m-array and is computed as a series of
linked contingency tables. Table 2.4 gives the names of the separate components of TEST 2
and some information about each component. Program RELEASE computes these tests and
labels them by the names listed in Table 2.4. Data required for TESTs 2 and 3 are not avail-
able (i.e., do not exist) under the first capture history and unknown capture history protocols.
Under the partial capture history protocol scheme B, only TEST 2.C2 exists. TEST 2.C2 is the
usual chi-square test of homogeneity based on the following 2 x k - 2 table:

miz My mig
mm ’71m LY m%
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Table 24. - Explanation of TEST 2: its components, their identification, hypotheses tested, and
computability of components by capture history (CH) protocol. TEST 2 is computed separately for each
data group; the data used are elements of the m-array (the my;). There are k - 3 test components (k > 4).
Computability under different protocols
Partial CH
Summary
statistics Complete  scheme scheme First Unk
TEST used Null hypothesis CH A B CH CH
TEST 2.C2 My135 ooy Mgk Parameters (¢, p) are Yes Yes Yes No No
Mygyy vy My the same for cohort
2 as for survivors
at site 2 of cohort 1.
TEST 2.C3 Mgy ooy My Parameters (¢, p) are Yes Yes No No No
the same for cohort
i=123 3 as for survivors
at site 3 of previously
released cohorts.
TEST 2.Gj My 541y o Mhoic Parameters (¢, p) are Yes Yes No No No
: the same for cohort ’
i=1.,j j as for survivors at
site j of previously
released cohorts.
TEST 2.Ck -2 My x1s Myix Parameters ($, p) are Yes Yes No No No
the same for cohort
i=1.,k-2 k - 2 as for survivors

atsite k-1 of

previously released cohorts.
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Notice that m;, was discarded, and that the row and column totals of this table were condi-
tioned. To get TEST 2.C3, take the totals for columns 4 to k and compare them with recap-
tures from cohort 4:

Mg + Moy mig + Mog e My + Mo
may Mmag N Mo

This summing of columns and adjoining of the next cohort continues until one uses cohort k -
2 (thereby getting TEST 2.Ck - 2). Note that for TEST 2.Ci, only recaptures downstream from
dam i are used.

TEST 2 is comparing the proportion of counts in rows 1 and 2 across the columns of the
contingency table. If these proportions do not differ significantly, then there is no statistical
evidence that the underlying survival and capture probabilities differ for the two rows of
counts.

The simulated control group data in Table 1.6 are here used for illustration (these are
the m;):

Cohorti j=2 3 4 5 6

1 1,104 247 1832 571 641
2 13 75 19 29
3 17 4 10
4 50 52
5 26
TEST 2.C2 is based on
247 1832 571 641
13 75 19 29
Column

totals 260 1,907 59 670

Adjoin the cohort 3 recaptures to the above column totals (omitting the leftmost column) to
get the table for TEST 2.C3 (note: “C” here denotes cohort, i.e., these tests are based on
cohort data):

1907 590 670
17 4 10

Column
totals 1,924 594 680
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In this example, TEST 2.C4 is the final test that can be computed. It is based on the data

594 680
50 52

Thus, for the control data, we have

TEST 2

o P

202 183 3 06l
2
1

2.C3 247 032
2.C4 022 0.64

TEST2 451 6 0.61

TEST 2 for the controls is the total of these three independent chi-square test statistics. None
of these test statistics is significant here; this is expected because these data were generated
under model H4 In a study with two or more groups, TEST 2 is computed for each group
separately and the overall TEST 2 is obtained by summing the separate chi-squares and
degrees of freedom over groups. v

2.1.3.3. TEST 3. - TEST 3 is based on the subcohort information available in the full
m-array. The data for the simulated treatment group example are shown in Table 1.3. Table
2.5 provides our recommendations for computing TEST 3. Basically, TEST 3 has a com-
ponent for every cohort that has two or more subcohorts. In fish-turbine survival experiments,
only cohorts 3 to k - 1 allow a TEST 3 component. In general Jolly-Seber studies, cohort 2
also has two subcohorts.

From Table 1.3, cohort 3, the contingency table of subcohort data on the fates of the
releases at dam 3 is:

24119 7 5 193
1 1 0 0 10

Here, 224 fish were rercleased with capture history {101}. The other 11 had history {111}.
Numbers of fish never recaptured were 193 and 10, respectively. As often happens, these data
are sparse, and some pooling is necessary to enable a test. Because of this pooling, we recom-
mend a routine splitting of these subcohort-fate contingency tables into two test components:
TEST 3.SRi and TEST 3.Smi, i = 3, ..., k - 2 (capital S denotes subcohorts; R denotes that the
test uses the R, r data; TEST 3.Smi is based on only the m,; data).
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The previous table partitions into

31193 for TEST 3.5R3
110
and into
B 75 for TEST 3.5m3.
1 0 0

There are often insufficient data to carry out TEST 3.Smi (as is the case in the previous exam-
ple), even if that table is further pooled into a simple 2 x 2 contingency table:

19 12
1 0

These 2 x 2 contingency tables are used in program RELEASE for TEST 3 components. Pro-
gram RELEASE does this pooling automatically because the subcohort data are often sparse.
The user can recompute these tests on the basis of less-pooled versions of these tables if that is
warranted. '

Table 2.5. — Explanation of TEST 3 components as we define them under the default pooling rules, and
the (potential) computability of components. TEST 3 is computable only for the complete capture history
protocol. Data are the subcohorts within released cohorts. Test components are often not computable if
data are sparse.

TEST 3.5Ri,i = 3,..,k-1.
Components are based on recaptures after time i. In RELEASE, the default test is computed from the 2 x 2 con-
tingency table defined below; only data from subcohorts of releases at time i are used:

h = {10..01},i.e., Tan Run -Tan
caught at dam 7, but Fa ~Tan R -1a) - Run - Tan)
notatdams 2, ...,i-1

The null hypothesis is that parameters (¢, p) for captures at times i + 1 to k are the same for all capture histories at
release time i. There are & - 3 of these tables (in the fisheries context here where only the first release has newly
marked fish). TEST 3 is not computable if k < 4.

TEST 3.Smi, i = 3, ...,k -2.

Components are based on recaptures at time i + 1, given release at time i/ and subsequent recapture. In
RELEASE, the default test is computed from the 2 x 2 contingency table defined below; only data from subcohorts
of releases at time { are used; A is as above:

Myish (ran - Mg 1)
Myjs-Myian (s - My341) - (fin - Mys 41n)

The null hypothesis is the same as for TEST 3.SRi. There are & - 4 of these tables (k > 5).
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Continuing with this example, the subcohort data for controls from Table 1.4 for cohorts 4 and
5are

cohort cohort
4 5
48 49 1,678 24 522
1 2 68
1 1 14

coNvOo
oy
v—u—ag-hoo

The 2 x 2 contingency tables for TEST 3 components are

TEST 3.5R4 TEST 3.5R5 TEST 3.5m4
97 1,678 24 522 48 49
5 82 2 638 2 3

Note that TEST 3.Smk - 1 never exists. In general, there is more information in the 3.SRi
series of components than in the 3.5mi series.

Results in this example for the control group are

TEST 2 df P
3.5R3 028 1 060
35R4 - 001 1 091
3.5R5 036 1 055
3.5m3 1.25 1 026
35md 017 1 068
TEST3 208 5 084
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The overall goodness of fit test for the assumption of site-specific parameters, which are not
subcohort dependent (i.e., the Jolly-Seber model), is the sum of TESTs 2 and 3:

TEST > df P

2 451 6 061
3 208 5 o0&

Total 659 11 0.83

Based on this goodness of fit testing for the control data, we would not reject the assumption
of site-specific parameters (i.e., the Jolly-Seber model fits the control data).

2.1.4. Discussion

As a basic strategy, we recommend first computing the goodness of fit tests. If these
tests reject the Jolly-Seber assumptions of site-specific parameters, one must consider using
more general models than we present here (see the discussion in Section 1.4.4). This type of
rejection is frequent in studies in which each release (by occasion or site) contains both new
animals and previously marked animals. However, we do not consider such studies herein.
When all initial releases are at site 1, there is a high likelihood (in our opinion) that the time-
specific assumptions about parameters will be satisfied in a carefully conducted study where
the rate of movement between dams is not affected by treatment, and there are no handling
effects.

If, based on the results of TESTs 2 and 3, goodness of fit is satisfactory, one then
proceeds to find an appropriate model to describe the results of the experiment. The first step
in that search should be the computation of TEST 1 and an examination of its components.
The set of models to be considered should then be determined by biological considerations.
When treatment is “applied” at site 1, as in a fisheries turbine, screen, or bypass study, it is
reasonable to consider the sequence of hypotheses presented here. The treatment effect is
then expected either to wear off or to manifest itself over time. Thus, we believe that in this
experimental setting, the time-ordering of parameters (¢, ps, ¢3, etc.) is relevant in testing
for treatment effect. Consequently, we recommend testing to determine if one of the
hypotheses of Table 2.2 adequately describes the data. If none do, or if it is logical to investi-
gate alternative hypotheses, one must resort to numerical optimization methods for further
testing and estimation. Numerical methods would be required, for example, to analyze the
data under a model wherein ¢ # ¢y (a general effect on survival) but p; = py was assumed
(no effects on capture probabilities). Program SURVIV (White 1983) handles this model.
Program RELEASE produces output that is easily used as input to program SURVIV for
analysis of these alternative scenarios.
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2.2. First Capture Histories

2.2.1. Introduction

Under the first capture history protocol, the easiest of the protocols to understand and
analyze, fish released at dam 1 are given a batch mark to distinguish treatment versus control
groups. Fish in both groups are sampled at downstream dams 2, 3, ..., k and, upon first cap-
ture, are removed from the population.

The analysis theory for experiments where only one downstream sampling site is used
(i.e., k = 2) dates back to Ricker (1945, 1948). His method is often referred to as the relative
recovery rate method because the estimator of survival rate is the ratio of two “recovery” or
recapture rates. Ricker (1958, 1975) extended the method to allow for k sampling occasions
and the estimator was again of a similar form, after some pooling of the data across sampling
sites. A more general theory was developed independently by Seber (1970) and Robson and
Youngs (unpublished report, 1971) (also see Youngs and Robson 1975). This theory allowed
greater generality in that marking could be done at n time periods (rather than just two),
recovery could be done over k time periods (k > n), time periods could be unequal, and pro-
cedures were free of bias due to truncation. A full discussion of these ML methods can be
found in Brownie et al. (1985). The methods of Ricker (1945, 1948), Seber (1970), and Rob-
son and Youngs (unpublished report, 1971) are concerned with the estimation of survival rates
based on marking of samples from the population at » time intervals, often once per year. For
example, northern pintail ducks Anas acuta might be banded with unique band numbers each
October for n years; therefore, the survival rate is the annual period between banding (e.g., 15
October of year 1 to 14 October of year 2). In the context here, the survival rate of interest
relates not to the time between marking periods but rather to a treatment éffect. The survival
rate is the result of a treatment because the releases of the treatment and control groups are
simultaneous, rather than a year apart. Finally, the probability of not being captured must be
incorporated into these models, although the estimators of treatment survival remain the
same. With this reinterpretation, the theory for the analysis and testing for the first capture
history protocol already exists for model H,4. We will use notation and terminology consistent
with the rest of this monograph. Interested readers may want to refer to Brownie et al. (1985)
for other applications and examples.

2.2.2. Model Structure and Expectations

Assuming that fish have independent fates and that all fish in the same treatment group
have the same probabilities of being recaptured at downstream dams, the data on first cap-
tures are multinomial. If a marked fish is released, it can be captured and removed at dam 2,
3, ..., k, or “never.” The model for this protocol is obtained by specifying the probabilities for -
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each outcome as a function of the parameters ¢ and p;. This corresponds to deriving the
expected values of the elements in the reduced m-array, E (m;;), for the two groups of marked
fish. Some examples for the control group will illustrate the concept:

E(mcIZ) = Ro1¢c1Dc2 5
E(m.13) = Re1de1gcabeales

E(mc14) = R;10:19:29c29c3PcaPc4 -

The first expression is the expected number of recaptures at dam 2 from the R,; control fish
released at dam 1. E (mm,;2) equals the number of control fish released (R,;), times the sur-
vival rate from dam 1 to dam 2 (¢.,), times the probability of recapture at dam 2 (p.3). The
final expectation is read as the expected value of the m, 4 equals the number of fish initially
released (R,;), times the survival probabilities for dams 1 to 2,2 to 3, and 3 to 4 (4.1, $c2, e3),
times the probability of not being captured at dams 2 and 3 (g2, g.3), times the probability of
recapture at dam 4 (p.4). The treatment fish have similar expectations, although parameters ¢
and p may differ from those in the control group:

E(my12) = Rudupez
E (my13) = Ryd1Gradeabes ;

E (my14) = Ryide1GiadaGeadrabea -

The observed data are then functions of the dam-to-dam survival probabilities (¢;), the
recapture probabilities (p;), and the probability of not being captured (¢; = 1-p;). In more
complex protocols, the ¢ and p; parameters can be estimated separately but are not individu-
ally estimable with the data collected under the first capture history protocol. Also, only lim-
ited tests of assumptions are possible under the first capture history protocol. Products of the
other parameters can be estimated, but these are of little interest (e.g., $o1Pv2> Po192902Dv35
and ¢,19y2Pv2-" * * Puk-1Pui). For this reason, subsequent modeling is simplified if the following
notation is used:

Ty = ¢lx’qﬁ +1¢a‘+1qﬁ +2° - -¢cj—1ptj

and
Teij = Peidei +19ci +19ci +2- - *Pes-1Pej -
The m;; are called “cell probabilities.” Under model Hyy, ¢ = S¢.; and all other parameters

(&, p;) are the same by treatment and control groups. Therefore, under model Hyy, my; =
S Teig-
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Table 2.6 presents a summary of the data from the general numerical example and the
corresponding notation, expectations, and summary statistics.

Table 2.6. - Example data, symbolic reduced m-arrays, expectations of the m-array, and sufficient
statistics for the general numerical data under the first capture history protocol.

Number recaptured and removed at dam j, my;

Releases
Group Ry j=2 3 4 5 6 Total
t 30,000 1,029 238 1,669 549 590 4,075
c 29,000 1,104 247 1,832 57 641 4,395
Total 2,133 485 3,501 1,120 1,231
t Ry Mgy My My mys Mye Ta
< Ra Meyz M3 Mew Mmeys Mee Tea
Total mq my m, mg me
6
t Ry M1z s Meaa s T ¥y
j=3
6
4 R, Lot 13 ‘Fcua Te1s %16 Zﬂ'cu
ij=3

a Teu = baqcrPeadcabeabled -

2.23. Likelihood Function

The likelihood function is derived from the joint probability function of the data for both
groups,

_ ° Rnl
Pr{mo;| S, ¢, i R} = vl;[t [[mum My13 *** Myti Ryy 'fu]

L ()™ (12

j=2

k

where v is a subscript to indicate the treatment (f) and control (c) groups, and A,; = 3735 .
7=2
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Terms such as ¢ indicate a vector of the dam-to-dam survival rates (¢ = ¢1, $2, s $1)- The
notation is formidable, but a simple example in which only two downstream dams are used
(k = 3) is helpful:

Treatment Control
v t c
Releases Ry R,
Recaptures My and my3 Me12 and m g
Never recaptured Ry -1 Re1-711
Cell probabilities T2 = $uiDi Te12 = PeiDe2

T3 = $1Geadeabis Me13 = Pe19c2Peales

3 ' 3
Pr{never recaptured} XAy =1- 3] my; A1 =1-Y mqy
=2 =2

An explanation of the probability function may be helpful. The joint probability function
of the data for both groups is

Pr{mvlj I S’ é’ E’ B}

and is read as “the probability of the reduced m-array, given the parameters S, ¢, ¢z, P2, Ps
and the known releases R;; and R,;.” This probability function has two components: the first
is composed of the product of two multinomial coefficients;

Rtl Rcl
Mz Mg Ry -11 | [Mesa Moz Rey -701 |

Alternatively, these coefficients can be expressed as ratios of factorial expressions,

Ry R;y!
My12imy3!(Rey - 1)) Me1a! Meya! (Rey -7¢1)!
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These expressions include no unknown parameters and can, therefore, be ignored for purposes
of parameter estimation. These expressions are part of the likelihood and are needed for
deriving tests of various assumptions.

The second component of the probability function is important for deriving MLEs of the
unknown parameters:

ﬁ [fl [Wvla']m'”] [1 '1\01]&1%1 .

v=t (=2

Letting v = ¢ for treatment, we can write out the first half of this expression,
My Mz Ry -m
["&12] X [”fus] X [1 - &1] .
Letting v = ¢ for control, the second half is simply
Mcia mes Rep-ra
[Wcm] X [7rc13] x [1‘&1] .

These expressions can be compared with those developed for the die-tossing study in Section
1.2.1 with two differences. First, the cell probabilities =;; are now functions of several parame-
ters rather than being a simple probability (e.g., p4 Was the probability of getting a four on a
die throw); and second, the final cell deals with the probability and number of fish never being
recaptured, which is a possible outcome (but has no direct analogy with the throw of a die
except, perhaps, if one did not tally the number of “sixes”).

The likelihood function relevant for parameter estimation is

L(S, ¢,p | maj) = f[ [131

v=t |7=2

s My1j 1- M Ry-ra
[ros) ™| (2]

and the log-likelihood function is

InL (S, 4,p | mu;) = 5_; [é m,,lj[ln('rr,,lj)]] + Rz Tu1) ln(l-A,,l)].
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2.2.4. Estimable Parameters

As noted earlier, individual ¢,; and p,; are not estimable from data collected under the
first capture history protocol. However, under certain assumptions concerning the ¢,; and p;,
treatment effects are estimable. In particular, if the treatment effect is direct, so that
$1 = She1, S5 =Peini = 2, ., k-1, and pg =py, i = 2, .., k, the treatment survival rate
S = ¢1/é.1 is estimable. Referring to the sequence of models introduced in Chapter 2.1, we
say that S = ¢, /4., is estimable if the assumptions of model H,4 are met. If the treatment
effect persists to dam 2 (the first recapture site) and beyond, models more general than Hy
are required and estimators of treatment effects may not be free of bias. We therefore discuss
.model H,4 in some detail and present tests to be used to determine if the model assumptions
are met.

Under model H,4, all parameters ¢,; and p,; are the same across treatment and control
groups, except for ¢; and ¢.;. Writing ¢,; = S¢., shows that my; = Smy; forj = 2, ..., k, and
X1 = SA;;. Making these substitutions simplifies the likelihood in Section 2.2.3 and enables
the identification of a minimal sufficient statistic and the derivation of estimators.

2.2.5. Minimal Sufficient Statistics

A minimal sufficient statistic (MSS) is
MSS = {ni, 7e1, ma, ms, ..., mia}t,

which is the two row totals and all the column totals, except the kth, of the reduced m-array.
These summary statistics contain all the information relevant to optimal estimation of the
parameters of the model under Hy4. The number of terms in the MSS dictates the maximum
number of parameters that can be identified (estimated). In the present example, k “parame-
ters” can be estimated, )

1 2 3 4 k
S $w2 hiqabPs  h1q26:q56Ps 0 $1g2daqs  PraDk -

The previous “parameters” are the cell probabilities my;, except that the parameter S is
separated and estimated uniquely.
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22,6. Analysis

The MLE of S, when all the data from dams 2 through & are used, is

A ’u/Ru
S =——
rcl/Rcl
B (Mg + mys + -+ + my)/Ry
(Meiz + Moz + =+ + Mex)/Rer

which is the total recapture rate for treatment fish (r;; /R;;) divided by the total recapture rate

for control fish (r.;/R.;). Using the data on first captures from the general numerical exam-
ple (Table 2.6),

& _ 4075/30,000
4,395/29,000

_ 01358333
0.1515517

0.896,

which, in this example, is close to the parameter value of 0.9.
MLE:s of products of other parameters are

Te1my
q2¢29s ** * $1D5 = —

Rei(ry +101)

These estimates maximize the likelihood function, given the data observed (m,;). Other

values are “less likely”; however, if a new sample was taken, then the ML estimates would take
different values.

The sampling variance of the MLE of the treatment survival rate S under model H 1418
1 1 .1 1

var(S) = (5) — :
() () rn Ry r.1 Ra
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and the estimated standard error is
se(S) =V %ar(S) .

The estimated sampling variance for the general numerical example is

1 1 .1 1
4,075 30,000 ~ 4,395 29,000

var(S) = (0.896)2

= (0.8028) (0.000212 + 0.000193)
= 0.000325;
se(S) = 0.0180.

The estimator :S‘: has a high, positive sampling correlation with the estimator of its sam-
pling variance, corr[S,var(S)]. This correlation can be seen by noting that the first term in the
expression for the sampling variance is (S°). Therefore, if S is too large, the estimated sam-
pling variance will be too large, and similarly, if S is too small, the estimated sampling variance
will also be too small. We computed estimates of this correlation for a few specific cases (see
Monte Carlo studies, Part 5) and found them to be high (e.g., 0.89).

An approximate 95% confidence interval (CI) for S can be computed in the usual
manner, assuming that the sample is reasonably large.

95%CI = § + 1.96 $¢(S)
= 0.896 + 0.0354

= (0.861, 0.932).
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Alternatively, the coefficient of variation (cv) can be computed as a measure of precision,

Model H,, assumes the only effect of the treatment is to cause a direct mortality (1-S). This
is a strong assumption (see Chapter 1.5).

2.2.7. Tests of Assumptions

The first capture history protocol allows only limited tests of underlying assumptions.
Under model Hy4, an overall goodness of fit test is in the form of a2xk -1 contingency table,

my2  Mps Tt Mee | May,
Mmei2  Mes v Meik | Mel
m y2 m a3 Tt m ik m,

The test statistic is distributed as chi-square with k - 2 df under the null hypothesis, which
states that the treatment and control groups have the same parameters except for ¢; and ¢,
thus,

¢y =@ foralli=2..,k-1,
and

Ps =ps foralli=2,..,k.

The alternative hypothesis for this general test is that model Hy 4 holds (all parameters ¢y
and p,; differ by groups). This test is the sum of TESTS 1.72, 1.73, ..., 1.7k - 1.
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The contingency table for the general numerical example is

1,029 238 1,669 549 590 | 4,075
1,104 247 1832 571 641 | 4,395

2,133 485 3,501 1,120 1,231 8470

Computing the test statistic from the above table gives x*> = 3.2, 4 df, with P = 0.52. Thus, we
have no evidence to suspect the validity of the null hypothesis (H, fits the data). We know
that the null hypothesis is true in this case because the data were generated from this set of
assumptions (cf. Table 1.1).

The goodness of fit test can be viewed in an alternative way that is often more intuitive.
Most biologists think of a goodness of fit test as

> (observed - expected )2
expected ]

The observed data under the first capture history protocol are the my;; and m,,;. Their
expected values, assuming H4 is true, can be estimated as

E(myy5) = RySéiqads «  ° 45405

and

ﬁ'(mcu) = Rerrq262 * ** $;405 -

Therefore, an alternative, but equivalent test of the null hypothesis that H,4 holds is

with k - 2 df. The results are equivalent to the contingency table approach unless some pool-
ing is necessary (in which case the contingency table approach should be used). Pooling is
required if E(m,;;) < 2. Program RELEASE performs a thorough analysis of data under the
first capture history protocol; example output is shown in Table 2.7.
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Table 2.7. - The output of program RELEASE based on the example data given in Table 2.6. Note,
most printers are unable to print subscripts, italics, or Greek letters; thus, for example, m;; is shown as
m(j, j) and ¢ is shown as phi.

Observed Recaptures for Group 1
Treatment Group

i R m¢i, j) r¢id
j= 2 3 4 5 ]
1 30000 1029 238 1669 549 590 4075

m(j) 1029 238 1669 549 590
z(j) 3046 2808 1139 590 0

Observed Recaptures for Group 2
Control Group

i R m(i, ) r(i)
= 2 3 4 5 6
1 29000 1104 247 1832 571 641 4395

m(j) 1104 247 1832 571 641
z()) 3291 3044 1212 641 0

Sums for the above Groups

m. 0 2133 485 3501 1120 1231
R. 59000 0 0 0 0
z. 0 6337 5852 2351 1231

r. 8470 0 0 0 0

Maximum Likelihood Estimates under Model H/5Phi

95% Confidence Intervals
Parameter Estimate Standard Error Lower Upper

|
|
Ratio of Survival between Groups for Occasion 6. |
I
I
[

| s(1,2) 0.889756 0.050231 0.791303 0.988209 |
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Table 2.7. - Continued.

TEST 1.75: Test of p(5) and Phi(4) equal across groups,
assuming higher order parameters are equal across groups.

it doommnn +
0| 549 | 590 [1139
E| 542.6] 596.4|
c] 0.1} 0.1]
D D +
o] 571 | 641 |1212
E| 577.4] 634.6]
c] 0.1 0.1
4ommnnn 4emmmn +
1120 1231 2351
Chi-square=0.2786 (df=1) P=0.5976

fe e e mmmmeeeeeeeameeassmsesee;easesseseesemesenemmeemmeeemmmeemm—eemen—n
| Maximum Likelihood Estimates under Model H/4Phi

: Ratio of Survivals between Groups for Occasions 5 to 6.

: 95% Confidence Intervals

| Parameter Estimate Standard Error Lower Upper
s omas | omeme | omesz | osows
oo e eememecseeeseccemeeeseei-sseesms-eseeaseeeeseeseesseseceeses=emmemn-

TEST 1.T4: Test of p(4) and Phi(3) equal across groups,
assuming higher order parameters are equal across groups.
LEEEERES e +
0[1669 [1139 |2808
E|1679.9|1128.1|
c|] 0.1 0.1]
R Focame- +
0]1832 |1212 |3044
E|1821.1]1222.9|
c| 0.1 0.1]
$ocnnan R +
3501 2351 5852
Chi-square=0.3388 (df=1) P=0.5605
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Table 2.7. — Continued.

LR R R R R L L L E R LR E R R Rl R R Rl el R il
| Maximum Likelihood Estimates under Model H’3Phi
I
| Ratio of Survivals between Groups for Occasions 4 to 6.
|
| 95% Confidence Intervals
| Parameter Estimate Standard Error Lower " Upper
| mmmeeeme e e oo e
| s¢1,2) 0.891721 0.022147 0.848314 0.935129
B L L L R N Rttt
TEST 1.73: Test of p(3) and Phi(2) equal across groups,
assuming higher order parameters are equal across groups.
+--m--- R +
0| 238 |2808 |3046
E| 233.1|2812.9|
c] 0.1 0.0]
$omceen fommann +
0| 247 |3044 3291
E| 251.9|3039.1|
¢| 0.1 0.0]
Fommme- Fomoom- +
485 5852 6337
;hi-square=0.2126 (df=1) P=0.6447
B L e R ettt +
| Maximum Likelihood Estimates under Model H’2Phi
I
| Ratio of Survivals between Groups for Occasions 3 to 6.
I
i 95% Confidence Intervals
| Parameter Estimate Standard Error Lower Upper
| mmmmmemee e s s e
| s(1,2) 0.894703 0.021254 0.853044 0.936361

— —— — st s

—
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Table 2.7. — Continued.

91

TEST 1.T2: Test of p(2) and Phi(1) equal across groups,
assuming higher order parameters are equal across groups.
e +---m-- +
0]1029 ]3046 |4075
E|1026.2|3048.8|
c|] 0.0] o0.0]
$ommmnn $ocacan +
0]1104 |3291 |4395
E|1106.8|3288.2]
c| 0.0] o0.0]
L L +
2133 6337 8470
Chi-square=0.0196 (df=1) P=0.8887

TEST 1.R1: Test of Phi(1) equal across groups,
assuming higher order parameters are equal across groups.
R Fomamnn +
0| 4075 25925 |30000
E| 4307.]25693. |
c| 12.5] 2.1|
N R +
0] 4395 |24605 |29000
E| 4163.|24837.|
c| 12.9] 2.2}
L to-moe- +
8470 50530 59000
Chi-square=29.6316 (df=1) P=0.0000

""""""" Mexim Likelihood Etinates urder Hocel Wohi |
Ratio of Survivals between Groups for Occasions 2 to 6. :
95% Confidence Intervals :

Parameter Estimate Standard Error Lower Upper
| omim omme | osws  omes |
........................................................................... +
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Table 2.7. — Continued.

TEST 1: Overall test of HO vs. H/5Phi
Chi-square=30.4812 (df=5) P=0.0000

TEST 1 is an omnibus test for a treatment effect(s),
i.e., significant differences between groups. For the
complete capture history protocol and scheme A partial
capture history protocol, TEST 1 is an overall test of
equality of all survival and capture probabilities
among groups.

A second test examines the null hypothesis that S = 1 (no mortality due to the treat-
ment). This test, termed TEST 1.R1, is based on a simple 2 X 2 contingency table:

Recaptured  Not recaptured

t %) Ry -m Ry
c Te1 Rcl -Te1 Rcl
ra Ry-ry R,y

Using the data from the general numerical example, we obtain

t 4,075 25925 | 30,000
c 4395 24,605 | 29,000

8,470 50,530 59,000

which yields a x* value of 29.6 with 1 df. The probability of a value this large, if the null
hypothesis is true, is virtually zero. Therefore, we correctly conclude S < 1 as we know that §
= (.9 in this example (Table 1.2).
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2.2.8. Extended Sequence of Models H 54, H 34, ey H 1 ¢

In this section we consider a sequence of hypotheses called models H'y, Hsy, ...,
H’..4 and tests between these models under the first capture history protocol. Our discus-
sion is brief because these models rest on assumptions about the recapture rates that may
often be tenuous and because the estimators of treatment survival rates are special cases of the
estimators under model H,4. The estimators given in this section may also be useful as
approximations to intractable models in certain cases (see Section 3.9.1). These models are
mentioned in Part 5, but no other mention of them is made elsewhere in this work.

The sequence of models allows the treatment to affect survival probabilities beyond ¢, .
However, these models assume py; = p,; for alli. Thus, the treatment is assumed not to affect
the recapture rates. The structure of these models is summarized in Table 2.8.

If model H,, is rejected by TEST 1.72, the following MLE should be considered

corresponding to model H 5.

§ _ (11 - my12)/Ryy
(rcl - mch)/Rcl
or, equivalently,

§ = (me1s + Myq +.ot Mygi) /Ry
(Me1s + Merg +.t Me1)/Rey

“Table 2.8. — Cell probabilities m; for the models Hyy , H 54 , and H s under the first capture history
protocol (k = 5). Models under this protocol are based on the assumption py; = p.; for all i.

Model v ji=2 3 4 5
Hyy t hi1Pa h192$Ds h192P2qs P3P 1929939 PuPs
4 ®c1Pa bc19:6:Ps 192293 P3P b19:4:1 936394 Ps
H'y t 1 D3 1 qadaPs h192h2gs b P h192hads b3 9abuDs
c &c1Pa 1933 Ps $:192 %293 P3P 1929293 b5 Gu b Ps
H'y t 1 D3 #1 92 haDs $192h2gs hsDu H192haqs hsdabuPs

¢ ¢c1Pa #192%3Ps b1 92 #2933 P 192 P29 s Qe PuPs
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This estimator is similar to the estimator for model H4 ; however, the numbers in each
group recaptured at dam 2 are deleted (i.c., the terms 7,5, and m,;;). With these numbers
deleted, the estimators of S, the sampling variance of S, and the goodness of fit test have the
same form as under model H,4 (however, df = k - 3, instead of k - 2). The estimator S under
model Hoy actually estimates the quantity

8152 i2/e2 »
where

S1 = /b1
and

Sz = b2/be2 -

Thus, the unbiased assessment of the treatment effect must assume g;2 = ¢,o. This assump-
tion is often poor, but under the first capture history protocol, the parameters p,; (or g, can-
not be estimated.

A test of model Hy4 (the null hypothesis) versus H 34 (the alternative hypothesis) is
computed from the 2 x 2 contingency table (TEST 1.72)

Mgz Mg + o0+ Mg
Mgz Mz + oo+ Meygg

which is distributed as a chi-square variable with 1 df. This 2 x 2 contingency table is obtain-
able from the 2 x k - 1 table for the overall goodness of fit test of model H;4 by pooling, within
- rows, all of the columns 3 through k. Using data from the general numerical example, the fol-
lowing table is obtained,

1,029 3,046
1,104 3291

yielding x?; = 0.0196, P = 0.89, which supports the null hypothesis that ¢y2 = @.2.
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Estimators of treatment survival for models H sy, ..., H ;.14 are similar in that the
recapture data from dams 3, ..., k - 1 are deleted, respectively. Estimators of S and var(S) are
summarized in Table 2.9 for models Hy4, H 54, ..., H ;1 4. The sequence of tests correspond-
ing to the models presented in Table 2.9 is given in Table 2.10. This sequence of models, tests,
and estimators may often be useful, at least as an approximation where p; = p;. Note, how-
ever, that no test of py = p, is possible based on data from the first capture history protocol.
Program RELEASE provides all the relevant test statistics and estimates for this sequence of
models (see Table 2.7); additional theory for these “peeled” models appears in Section 3.9.1.

Table 2.9. — Summary of the sequence of estimators available for data from the first capture history
protocol. This sequence is similar to that discussed later for the complete capture history protocol.

Data from
Model dams s var(S)
H, 1 0
fia/Ra sof1 1 1 1
H, 2, .,k _ Y|l - — + — - —
¥ ra/Ra ©) | o Ry r1a Rcl]
(- Muya)/Ru I 1 1 1 ]
H". 3, .nk —_— S)? — 4 —
» (1 -mc1a)/Ra ©) | Tta -~ M1z Ry fa-Mgz  Rq
(fa -Ms ~mu)/Ra o[ 1 1 1 1 ]
H’ 4, ..k S)? e — ]
# T (rc1 - M1z - meys)/Rea ® 7 -Ma =My R e -Mena - Mess R
Myue/Rey ol 11 1 1
H’y, k Y |—— - — + - —
b Meye/Ra © my Ry Mo ch]
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Table 2.10. — Summary of between-model tests for the first capture history protocol. All tests are in the
form of a 2 x 2 contingency table and are computed by program RELEASE.

Null Alternative Test
hypothcsis"‘l hypothesis number? Contingency table
H, Hy 1R1 T Ry -ry
Ta1 Ry-ra
Hy, H’y 1.72 Mya Mgy +... My
Mg Moyt tMmoy
H'y H's, 173 Mys Moot Myy
Meys My e +mc1k
H'yay H'vag 1Tk-1 Myya My
mcl,k—!. M
3 See Table 2.2.
b See Tables 2.1 and 2.3.

The sequence of alternative estimators in Table 2.10 is useful if the treatment affects
survival beyond dam 2; however, the methods are only completely justified if there are equal
recapture rates between groups. The alternative sequence of models can sometimes reduce
bias in S substantially under the first capture history protocol, especially if the p,; are small
(see Chapter 3.9). The variance of S increases as more data are deleted from the analysis.
For example, if we rejected model Hy4 and had to use model H'y (i€., deleted recaptures
from dam 2 in the analysis), we would have computed S = 0.895 (compared to S = 0.896, the
estimate based on model H,,), but the precision would have been poorer (5e(S) = 0.0213,
rather than 0.0180). Other comparisons can be made from Table 2.7.
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2.2.9. Relative Recovery Rate Method

The relative recovery rate method is mentioned because it represents a good analysis
method for experiments as they have been conducted commonly in the past. The protocol
involves first capture histories of batch-marked fish in two groups, as we have discussed. In
this special case, however, fish are recaptured at only a single downstream dam (dam 2).
Ricker (1945, 1948) gave the MLE of S as

A My Ry
S =—
Ry meyz
or, in our form,
A my12/Ryy
S =—-,
mcu/Rcl

The estimator of the sampling variance is also a special case of the theory we have just
presented,

11+11

var(§) = (§)

mya Ry Moz Re

Although this procedure is an optimal estimation method for a given field design and certain
(restrictive) assumptions, we do not generally recommend it. The data do not allow even
minimal tests of assumptions, the assumption that pi; = p,2 in particular. Moreover, the
approximate expected value of this S (under any model) is

E@) =s 22,

De2

thus, § is sensitive to the assumption that p;s = p.o. Additional discussion of absolute and
relative recovery rates is found in Manly (1981).

2.2.10. Discussion

The first capture history protocol has several advantages. Only simple batch marks are
required. Record keeping at dams 2, ..., k is simple, as recaptured fish are removed and not
rercleased. Some tests of assumptions are possible, and estimation methods are developed
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and available. Although the various estimates and tests can be computed on a small calcula-
tor, we urge the use of program RELEASE for a thorough analysis of data.

A potential problem with the first capture history protocol arises because the theoretical
variances (i.e., those derived from the likelihood function) may be underestimated due to a
possible lack of independence among fish. Heterogeneity in large river systems yields data
having more variability than the multinomial variation embedded in the model. This hetero-
geneity probably arises from a host of sources, but has almost no effect on the point estimators
of treatment survival S. The solution to these issues relies on some form of replication that will
enable computation of a proper empirical variance. This replication can be conducted in
several potential ways, two of which we mention briefly here. (This subject is treated in more
detail in Part 4.)

True replication represents one of two main approaches. Treatment and control fish
would be allocated randomly to, say, 10 replicates. Fish in the various replicates would be han-
dled, marked, held, and released together. The appropriate variance is the component due to
variation in S among the 10 replicates.

Alternatively, quasi-replicates termed Jots can be used. In this situation, the team con-
ducting the experiment might release 10 lots, each consisting of 15,000 treatment and 15,000
control fish. The lots might be released over 10 nights. Here, the variance among the 10 esti-
mates of treatment survival contains an additional component: the day-to-day variation. This
component would include any known changes in experimental conditions (e.g., blade angle of
turbine, river height behind the dam) as well as changes in unknown conditions (e.g., predation
pressure). Lots, then, are not identical in terms of experimental conditions. Often, the lot-to-
lot variance gives more useful information than if true replicates had been used. In general,
the planning team can view the use of replicates or lots as alternatives, depending on the study
objectives.

An estimate of the treatment survival rate could be made from the lots or replicates as a
weighted or unweighted average of the individual estimates. In the weighted case,

10 ’

1 1 1 1
where wy = |[—-—>—+ ——-
! i Ry ra Ra

sampling variance of S could then be computed empirically as

or a similar expression taken from Table 2.9. The



2.2. FIRST CAPTURE HISTORIES 99

10 a A
XowilSi -85)?
{]ar(s) - t=1 =

92W,‘

i=1

If such replication could be done carefully and with proper attention to all the field practicali-
ties, an excellent experiment could be expected.

An alternative procedure would involve subsampling by time periods of the day at dams
2, ..., k. Consider releasing 150,000 treatment and 150,000 control fish with batch marks. The
number recaptured and removed at each downstream dam would be tabulated by time period
of the day (e.g., six 4-hour periods). If this subsampling could be done at each dam, six
reduced m-arrays could be analyzed to provide six estimates of treatment survival. Each esti-
mate would be a nearly independent estimate of S, and an average of the six estimates could
be used to estimate the survival rate and an empirical variance. This procedure has advan-
tages, but may not be feasible in all situations. However, our main point is that proper replica-
tion or subsampling should be built into the design of experiments involving the first capture
history protocol (see Part 4).

Readers interested in further information on the ana1y51s procedures for this general
type of protocol are encouraged to study Seber (1970), Robson and Youngs (unpublished
report, 1971), and Brownie et al. (1985:1-55, 170-175). However, an understanding of these
studies requires the reinterpretation that S relates to a treatment survival rate rather than to a
time-period survival rate. In addition, the ¢; terms do not appear in the reports because the
sampling, sport, or commercial exploitation of the population affects the entire population, not
just the released, marked animals.

In many treatment-control survival experiments, it is informative to examine the number
of losses on capture (d), by group, at each dam (this discussion relates to fish lost accidentally,
rather than to deliberate removals). It seems reasonable that the losses on capture at each
dam are proportional for treatment and control groups. This assumption can be tested by
using a simple chi-square test. If d,; and d,; are the number of fish lost on capture at dam j for
the treatment and control groups, respectively, the following k - 1 contingency tables can be
formed:

dyji My -dig j=2.,k

dc 17 me 17 ° dc 1

The total chi-square statistic has k - 1 df, as each 2 x 2 table has 1 df. A rejection of the null
hypothesis as the result of this test may be evidence that the treatment has a delayed effect.
Fish may be slightly injured, making them more susceptible to predation or other fates
(lowered ¢;) or more susceptible to capture (higher p,;). Insight into these issues can be
achieved by comparison of the pattern of observed and expected values in the contingency
table (also see Part 3).
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23. Unknown Capture Histories

2.3.1. Introduction

Under the unknown capture history protocol, fish are given a batch mark to distinguish
between treatment and control groups released at dam 1. Fish in both groups are recaptured
downstream at dams 2, 3, ..., k, and all fish are rereleased without further marking and without
the investigators knowing their previous capture history. The data from an experiment con-
ducted under this protocol are represented as

Ry myg my -+ my
Rey mez mesz o mg.

Note that m,; is the total number of fish of treatment group v captured at dam j. Referring
back to Table 1.15, one sees that

3-1
My; = Myy = 2 My .
.=1

Only the total number of fish captured at dam j is known for each treatment group because
capture histories of marked fish are unknown. For example, it is not known how many of the
recaptures at dam 3 were also recaptured at dam 2.

To illustrate data under this protocol, we use the data in Table 1.9 from the general
numerical example

Recaptures m,; and m,; by dam

Released at Totals
dam 1 2 3 4 5 6 m,

t 30,000 1,029 249 1,762 616 691 4,347
c 29,000 1,104 260 1924 644 758 4,690
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The previous example shows that an additional statistic is needed:
k
m, = Y my;.
=2

For example,
m, =4,347 and m, = 4,690.

These totals are the basis of the estimate of S under this protocol.

This protocol has been used in many survival experiments conducted on the Columbia
River in recent decades. Data collected under this protocol do not lead to an exact statistical
analysis in the sense of the other three protocols, except in the special case where k = 2
(Ricker’s relative recovery rate method, discussed in Sections 2.2.1 and 2.2.9). Although it has
undesirable properties, the unknown capture history protocol may be a reasonable approach
when the capture rates p; are low and are not affected by treatment, and replicate lots enable
estimates of precision.

2.3.2. Model Structure

The data under the unknown capture history protocol are not multinomial because a
specific fish can be caught at more than one downstream dam. In fact, simple expressions for
sampling models for these data cannot be derived. Consequently, exact theoretical methods
cannot be developed for this protocol. In addition, losses on capture present further
difficulties or require further assumptions. In the following material, we consider the case
where the capture rates p; are low (i.e., < 0.05), the number of capture sites (or times) is small
(say, k < 7), and the number of fish released in each group is large.

We start with the special case of k = 2 to aid in understanding of this protocol. Only in
this special case of the unknown capture history protocol are the capture histories known. The
expectations are

E (my3) = E (Mmg12) = Ry ¢e1 Pra

and

E(ch) = E(mclz) =R.1 ¢c1Pe2-

We make the assumption that p;; = p., and define the treatment survival rate as S = ¢, /..
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Then the exact MLE of the treatment survival S is

§ = my2 /Ry
Mmea/Rey ’
with estimated theoretical sampling variance

- A 1 1 1 1
= 2| — - —— +
var(S) = (5) mgy Ry mea Ry

Even with replication, we do not recommend this procedure; tests of the critical assumption
that p,, = p. are not possible, making this a poor scientific design.

Finally, we note that the case of ¥ = 2 is identical to the first capture history protocol
with k = 2. (In fact, all protocols are the same when k = 2.) That equivalence does not hold
for k > 2. However, we, of necessity, use some first capture history methods even with
unknown capture history data. '

In the case where k > 2 and there are no losses on capture, the expectation of the
number of recaptures at dam j can be expressed as

-1
E(my) =Ry [h;ﬁu] Py
and
J-1
E(mcj) =R [E¢m] Dej -

For example, for k = 3, the expectations for the control group are E (m,3) = R.14.1p.2 and
E (m.3) = R.1¢c14:2P.3- In general, as long as there are no losses on capture, the expected
number of captures at dam j is just R, times the probability of surviving until dam j multiplied
by the (conditional) capture probability at dam j. Note that when there are no losses on cap-
ture, captures at intermediate dams 2 through j - 1 have no effect on the expected value of m,;
(extensions to the case of losses on capture are given in Section 2.3.5).

Some assumptions must be made in order to estimate a treatment effect. It suffices to
assume that all of the ¢ and p; are equal between treatment and control groups except ¢, (i.e.,
Sz = Pe2s oo Pek1 = Peke1s Pt2 = Pe2s - Ptk = Per)- This is model Hygy. We then define the
treatment effect tobe S = ¢, /¢.;. These assumptions mean that
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E(myg) _ s E (m,;)
Rtl Rcl ’

i=2 .k,

and, by the method of moments, the estimator of S is

k
my; /Ry
5,_ ,é:'z v _ m; /Ry
Tk " m, /Ry
Emcj/Rcl c./ 1
§=2

This estimator is similar to the MLE of S under the first capture history protocol for model
Hiy

For the first capture history protocol, the MLE is

"u/Ru

S = :
rcl/Rcl

The r,; and 7,; do not include muitiple counts of fish due to (unknown) multiple captures.
Thus, one always has r,; <m, and r,; <m, ; however, the difference m,, - r,; is small if cap-
ture probabilities are small. Contrary to what one might think, the extra counts reflected in
m,,and m, do not improve the precision of S. If the p; are low, the probability of a specific
fish being captured more than once is small and then unknown capture history data are essen-
tially removal data, just like those data under the first capture history protocol. In this case,
the unknown capture history estimator is close to the fully efficient MLE of S for removal
data. x

An example will illustrate the effect of low capture probabilities. Assume that 30,000
fish are released; k = 4, p; = 0.01, p; = 0.04, and p, = 0.02, and survival rates are constant at
098 (i.e., ¢ = ¢2 = ¢35 = 0.98). Here we would expect only 39 of the 30,000 initially released
fish to be caught twice. The expected number of fish caught at all three downstream dams is
0.2, less than one fish. In such cases, the data are similar to data under the first capture his-
tory protocol and the estimator can be considered approximately ML. Furthermore, the sam-
pling variance is closely approximated by the theoretical sampling variance developed under
the first capture history protocol, and the goodness of fit tests are similar because few fish are
captured more than once.

As capture probabilities increase, the number of fish captured more than once increases,
making the approximations noted above progressively poorer. However, provided H,4 holds,
the estimator
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mt./ Ry

S =
mc./Rcl

remains appropriate. Although the estimator is not the MLE (because the likelihood is
intractable), it appears to be the best estimator possible. The variance formula and goodness
of fit tests developed for the first capture history protocol are not strictly justified, as capture
probabilities or k, or both, increase, causing a substantial number of fish to be captured more
than once. Alternative theoretical variance formulae are considered below. However, even
those formulae are not totally satisfactory. The simple fact is that the first capture history pro-
tocol is superior to the unknown capture history protocol; we consider the unknown capture
history protocol here only because many data have already been collected in this way.

The data for the general numerical example in Table 1.9, which can be used to illustrate
the estimation of S, are reproduced here.

Recaptures my; and m,; by dam
Released at Totals
dam 1 2 3 4 5 _6 my

t 30,000 1,029 249 1,762 616 691 4,347
c 29,000 1,104 260 1924 644 758 4,690

Note that losses on capture are included in these counts and in the totals used to compute S.
The estimate of S is

§ = 4:347/30,000
4,690/29,000

= 0.89%.

From the first capture history protocol one has r;; = 4,075 and r,, = 4,395; thus, about
300 fish in each group (treatment and control) were captured more than once (about 1% of
releases). When one conducts a study using the unknown capture history protocol, the rate of
multiple captures will, of course, not be known.

If we treat the estimator in this example as if it were based on first capture history data,
we have (from Chapter 2.2),
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" A A 1 1 1 1
var(S) = (S)2 [m_L-R_u + m, - Rcl]

1 1,1 1]’

= 2 - -
= (0.8%) [4,347 30,000 4,690 29,000

which gives §e(§' ) = 0.0174. However, a slightly better formula for the sampling variance of S
under the unknown capture history protocol, developed in Section 2.3.5, is used by RELEASE:

5 (=)}

2
car$y = (2l L L[ ™M ||, L1
var(S) (S){mt~ Ry E)z my, m, Rg

K

Computed here, we obtain,

1029 , 1 0272
4,347 730,000 4,690 29,000 |’

var(S) = (0.896)2 [

or
Se(S) = 0.0185.

This standard error is slightly larger than the one produced by treating these data as first cap-
ture history data. We expect, theoretically, that the unknown capture history protocol will pro-
duce results less precise than those under the first capture history protocol.

We recommend using empirical sampling variances with the unknown capture history
protocol. For the estimation of these variances, we recommend a study design with at least
five lots. The sampling variances are then computed empirically from the replicate lots.
These ideas are developed in Part 4.

One is forced to use the methods appropriate for the first capture history protocol in
testing the assumptions for this protocol. We do not repeat those tests here (see Chapter 2.2).
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2.3.3. Estimable Parameters

The only estimable parameter of interest under this protocol is S, the treatment
survival rate {we are assuming an acute treatment effect). Estimates of the products
be1b2 *** $jaljj = 2, . k, can be made, assuming that the treatment and control
groups are alike at, and after, dam 2 (hypothesis H,4). These products are, however, not
intrinsically of interest.

If losses on capture occur, the moment estimator of the treatment survival is valid if
it is assumed that losses on capture are not affected by the treatment. An examination of
the expectations for the m,; and m,; (presented in Section 2.3.5) illustrates this point.
Also, this assumption can be tested by using the contingency table method given in
Section 2.2.10.

The information on losses on capture for treatment and control groups is examined
here to illustrate this procedure. Assuming model H,4 (i.e., an acute treatment effect),
the losses-on-capture data in Table 1.9 are summarized into the following contingency
table as a basis for testing equality of loss rates over treatment and control groups.

Dam
2 3 4 5 6
t |33 14 8 260 32
c| 33 10 62 28 39

The chi-square value for this table is 4.1 with 4 df, P < 0.48. This value provides no evidence
that the losses on capture have been affected by the treatment. In addition, there is no reason
to suspect delayed mortality due to the treatment.

When program RELEASE is used to compute this chi-square test, it prints the observed
and expected values along with the chi-square contribution, thus allowing the investigator to
look for patterns among the observed and expected values (Table 2.11).

Table 2.11. — Observed and expected losses on capture and chi-square values for testing that losses on
capture are not affected by treatment, for the general numerical example under the unknown capture

history protocol.
Dam

Group 2 3 4 S 6

t Observed(0) 3 14 85 26 32
Expected(E) 346 12.6 77.2 283 373

(O-E)Z/E 0.08 0.16 0.80 0.19 0.74

c Observed(0) 33 10 62 28 39

Expected(E) 314 114 69.8 257 337

(0-EY%/E 0.09 0.17 0.88 021 0.82
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Here, no pattern is suggested and the chi-square value is about what is expected when the null
hypothesis is true.

This way of examining losses on capture is valid under model H for any protocol when
only an acute effect exists. In a test of equal loss rates for treatments and controls, which is
valid under any hypothesis about the treatment effects, a series of 2 x 2 tables is used, one for
each recovery dam. In this example, for dam 2, the table is

33 996 | 1,029
33 1,071 | 1,104

If we let d,; = losses on capture for treatment group v at recapture dam j, then the general
table under the unknown capture history protocol is

diy  myg-dy | My
de; Mey - dc_.,' me;

For dam 3 in this example, the general table is

14 235 | 249
10 250 | 260

Here, x* = 0.89 with 1 df.

In this example, there are five such 2 x 2 tables. The total chi-square (5 df) from these
tables also provides an overall test of whether the rate of loss on capture is the same for treat-
ments as for controls. That test statistic value is 7.68, and is not significant.
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2.3.4. Discussion

The unknown capture history protocol has two operational advantages: only batch
marks are needed, and fish do not need to be removed when caught. Schoenemon et al.
(1961) presented examples where this protocol has been used. However, there are also seri-
ous disadvantages, the most serious of which is that nothing is known about the capture history
of the marked fish; thus, a proper likelihood cannot be derived. Theoretically, the likelihood
can be written, but it contains a large number of inestimable parameters. The estimator of S
is a moment estimator (hence, of uncertain efficiency) whose theoretical sampling variance
can only be approximated. Only limited testing of model assumptions is possible.

Ideally, this protocol might be considered after a conclusive study, in which unique
marks are used, indicates that model H,4 fits the data gencrated in a particular experimental
setting, i.e., capture probabilities are equal for both treatment and control groups, and ¢, ...,
ér2 are equal for both groups. One might then consider further experiments using the
shortcut unknown capture history protocol with proper replication. The poorest study design
for conducting experiments is the use of the unknown capture history protocol without replica-
tion and with k = 2.

2.3.5. Theory for the Unknown Capture History Protocol

Material in this section is provided more for the sake of completeness than for its useful-
ness in most survival experiments.

In principle, one can write the probability model for the complete capture history case
and then derive the likelihood for the unknown capture history case. In practice, however, this
approach is difficult. The result is a convolution of different multinomial distributions that is
difficult to write, let alone maximize.

We use moment techniques to derive an estimator and theoretical formulae. First we
develop some theory for the recaptures mg, ..., m; from just one arbitrary released cohort of
size R. Some notation used here:

m;  is the probability of loss on capture; in practice it suffices to treat this probability as the
proportion of the m; that is lost on capture,

¢1p2s ]=2

1
iT¢i-1(1 'Piﬂ'.')] $iaPi, J =3, k.

=2

fj=
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Then

E(m;|R) =Rfj, j=2, .. k.

If there are no losses on capture, we put all x; = 0, giving
f:’. = ¢1 cee ¢J._1p]._

The marginal distribution of m; is binomial (R,f;) under the assumptions that each fish
represents an independent Bernoulli event. However, pairwise, the m; and m;, are dependent:

cov(my, my) = R@,.a 1) -fi(1-m; p,-)] T%E ,j <h

This covariance can be derived by considering a single fish. Define x; = 1 if the fish is cap-
tured on occasion j, x; = 0 otherwise. Then E(x;) = f; and cov(my, my) = R (E (xxs) - f fn)-
Next, )

E (xp) = Pr(x; = 1andx, = 1)
= Pr{xj = 1}Pr{xh =1 |x,- = 1}
= f:‘l(l - ﬂ'.1')¢.1'(1 'Pj+17rj+1) “** Pnabn

pi(1-m) .
= _-"___’fh’ j<h.
1-pym;

k
These results allow the derivation of var(m.),m. = Y m;:
=2
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var(m.) = R[i)z fa- f,-)] + 2%3 zk) cov(m;, my)

j=2h=3+1

-l na-p| B A2 (2]

=2 1-Pi |p2ja1

E Y2 ok
(] o)

J j=2

An alternative expression is

—2 1-pimy

var(m.) =Rf.(1-f.)+mL§;M[ i f,,”

k
Here,f. = Y, f;-
=2

Note that if ;3 = -+ = m; = 1, the results apply to the first capture history case. At
the other extreme, even if all x; = 0, the theoretical variance of m. is technically not estim-
able. In practice, this means that a biased theoretical estimator of var(m,) must be used.

Consider point estimation of a treatment effect. Now a subscript is added for treatment
or control to all parameters and statistics. Under Hyg, fi5 = Sfes> 50

E(m) _ (E(m.)
Rtl Rcl )

(Note that this requires m; = m,; for all j.) Under more general models, there are options for
“peeling off” (discarding) data from upstream dams to obtain a better estimate of treatment
effect not possible with the unknown capture history protocol. This procedure works like the
one for first capture history data (see the discussion in Section 2.2.8).

The theoretical sampling variance of Sis

var(my,) var(m, )
Em)F [EmJIF]|

var(S) = (5)?

One must select an approximation to var(m.) to estimate this sampling variance. Both theory
and some numerical work suggest to us that for low rates of loss on capture and low capture
probabilities (as in typical turbine studies on the Columbia River), the better approximation is
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var(m.) = R[éfj(l -f,)] .

The f; are estimable, f, = m,/R, but the covariances are not estimable. If these covariances
are negligible, an estimator of theoretical sampling variance is

A k mvj
var(m,) = Y my(1- R——) , V=LcC.
7=2 vl

my,
Rul

X R E . 2 k oF 2
) - G-l (2 |- - 2 (B3

This formula is used in program RELEASE. If there is sufficient empirical replication, we
recommend using an empirical estimator of sampling variance.

(The alternative is m,[1 - ]) This approach produces

The critical point is which approximation is the better for var(m.). The following exam-
ple is informative. Let k = 6, all p; = 0.03, and all ¢; = 0.98 (and no losses on capture). The
exact result is then var(m.) = R(0.16649). Here f. = 0.171236, so

Rf.(1-f.) = R(0.14192) ,

whereas
6
RY f(1-£;) = R(0.16311).
i=2
From the Cauchy-Schwartz inequality,
2 \2
(25) 225 s

therefore, from the first expression for var(m,), the second and third terms tend to cancel
(hence the result in the example). In essence, the Cauchy-Schwartz inequality provides
theoretical support for our choice of approximation to var(m).
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2.4. Complete Capture Histories

2.4.1, Introduction

We here consider the experimental protocol whereby the experimenter can obtain the
complete capture history of each marked fish, cither by using a unique tag for each fish
released or different batch marks at each dam. If we consider one group of fish (treatment or
control), the basic model used to analyze these data is a special case of the Jolly-Seber model
(Jolly 1965; Seber 1965, 1982:196). We follow only the marked animals and estimate survival
and capture probabilities (Cormack 1964), whereas the general Jolly-Seber model also uses
marked-to-unmarked ratios to estimate population sizes and numbers of new recruits. Litera-
ture on the Jolly-Seber model includes papers by Manly (1971a), Cormack (1973), Buckland
(1980), Pollock (1981b), and Pollock and Mann (1983). Pollock and Mann (1983) and
Hightower and Gilbert (1984) presented applications of the Jolly-Seber model in fisheries
management. The Jolly-Seber approach must be extended in the present work because treat-
ment and control fish potentially have different survival and capture probabilities. Many possi-
ble models are available, depending on the number of treatment and control parameters that
are different or common (e.g., Table 2.2).

First we present the basic model structure for the case where all parameters are
different for the two groups. Because this model is the core of our discussion, we present
detailed descriptions of point estimators of parameters and their variances and covariances.
We next consider the sequence of models obtained with the complete capture history protocol
as we allow the number of parameters common to both treatment and control groups to
decrease from all to none, briefly describe goodness of fit testing for this protocol, give a
detailed hypothetical example using numbers to illustrate our methodology, and finally present
some details of the specific theory for this protocol (complete details are in Part 3).

2.42. Model Hy; 4

At the first site (i = 1), there is an initial release of marked fish of the treatment and
control groups. At downstream sites (i = 2, .., k), marked fish are recaptured. Typically,
marked fish are released again, although some fish may be removed because they are
wounded by capture or are needed for other research. The basic data are conveniently sum-
marized initially as a capture history matrix (see Section 1.3.2.1).

Most analyses (except for the goodness of fit tests computed as components of TEST 3)
can be performed on the reduced m-array summarization of the data represented in Table
2.12 (see Section 1.3.2.3), illustrated here for the case of k = 4 sampling times.
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Table 2.12. - Data summary (as an m-array) for the complete capture history protocol (k = 4).

Number recaptured at dam j, my;

Release Releases
site R, j=2 3 4 Total
Treatment group

1 Ry Mg Mmys My a

2 Rz Mygs My ha

3 Ry My fes
Totals my, My my,

Control group

1 Rcl Mmeia My Mo Ta

2 R, My My Te3

3 Res My Tes
Totals Mo mes meg

To illustrate the parameter structure, Table 2.13 shows the expected values of the number of
captures — i.e., E (my; | Rg) and E (m; | Ri) — when all parameters may be different for the
treatment and control fish.

Table 2.13. - Expected numbers of recaptures, E (my;) and E (mg;), for the complete capture history
protocol (k = 4) under the general model Hy, 4

Number recaptured at dam j, my;

Releases
Ry j=2 3 4 Total
Treatment group
Ry Rudpea Riyb1Giatrabrs Rudidiahadushale Ry
Ry, RisraDis Ria$aGraralua Rk
Ris Rishapre Rishs
Control group
Rcl. Rc1¢c1pc2 Rcl'ﬁclqc#ci’cs Rc1¢c1qc2¢c2qc3¢c¥’c4 Rcl.&l
Rc2 Rc”cﬂ’cs Rc2¢<2qc3¢cwcd Rc?&:ﬂ

R Resbeales ResAs
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Under the most general model structure Hy 4, we can apply the Jolly-Seber method to
each group of fish (treatment or control) separately because we assume that every parameter
is different for the two groups. Therefore, no information on treatment fish is obtained from
control data or vice versa. The point estimators and their variances and covariances were
given by Seber (1982:199). However, we use a different representation of these parameter
estimators that leads to simpler formulae in the more complex models.

All point estimators depend on the minimal sufficient statistic
MSS = {rtl, Ti2y ooy Tekals M2y M35 eooy M k15 Teds Te2s ooos Tek1s Me2y Me3y ooy mc,k-l} .

Notice that the minimal sufficient statistic can be partitioned into two components, one for
each group of fish, each component corresponding to the minimal sufficient statistic under the
Jolly-Seber model for that single data set.

The parameter estimators under this model are

re [m: . R.: v
By = L5 | Thivd , Find ‘*‘*‘], i=1.,k-2;
Ry _Tz,i+1 Tt,:‘+1"t,|‘+1_|

Tei mc,i +1 zc,i +1Rc,i +1 ]

;= , i=1.,k-2
&a Rci | Tc,i+1 Tc,i+1’c,i+1J T ’
Ttk
k- =5
1p Rt’k,l b
/\ rc,k-l .
e,k-1Dck = R e ’
¢,k-
5 e j =2,..,k-1;and
pﬁ—mﬁ+zﬁRﬁ/ru~’ P = 4y ey K- 15 ANk
a~ Mme .
Pi=—"—, i=2,.,k-1.

My + Zei Reif1ei

Recall that Ty = my; + zz and T = }nd + 2. Definitions of other terms are in both the
Glossary and Section 1.4.2.
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The theoretical variances for the treatment group are given as:

Sar(h) = @)2[—_-—+<qa,.+1)[ ! ]

Niv1 Rt,i+1

2
s, M)t M i
+ (Ges 1- ]’ i=1.,k-2;
(Qt,c+1) [ Rt,s‘+1J Zt’.'+1Tt,c'+1

~ ~ ~ ) 1 1 1 1 -
var ) = N .2 —_—— A — e — N l=2,.u,k'1v
Ps) = (Pugs) e Ry My PR

The survival effect 3',- between dams i and i + 1 is estimated by
Si = ¢5/Bei -
The estimated variance of 3‘,- is

2 var(r?«-) Var(éc,-)
B Boi-

var(S ) = (S )

Additional theory for variances and covariances of S , under different models, is in Chapter 3.3.

Most of the possible covariances between the 2k - 3 estimators (within a group) are zero;
theoretical formulae for the non-zero covariances for the treatment group are:

a ~ |1 1 .
cov(&m’-l’ @a) = '&t,i-l &h qs [_' - E—] » 1= 29 weey k- 2;
Iy &

~ ~ ~ ~ 1 1 .
cov(Ps, Ps) = & Ps Qs [—-R—], i=2.,k-2;
rg &

1 Teiv1 1 .
CoV(P; Priv1) = Pubrist @risn)? [ + [1 - —+] —] i=1.,k-3.

i+l Rt,s'+1 Rt,c+1 Zii41

The variances and covariances for the control group estimators are of the same form; subscript
t is replaced by subscript ¢. Notice that alternate survival estimators within each treatment
group have a negative covariance. Because all parameters are distinct for the two groups in
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this model and the data are analyzed separately for each group, all treatment estimators are
independent of all control estimators.

2.4.3. Model Sequence

The most general model Hy., 4, discussed in Section 2.4.2, is often too general because
treatment and control fish may differ only in a few of the initial survival and capture probabili-
ties. In Chapter 2.1, we presented a sequence of models ranging from H, (no treatment effect
on any parameters) to the most general, H;.; 4. We reiterate the meaning of these hypotheses
(models) here, ordered from the least general to the most general model.

Hy: $i1 = e1s Ptz = Pe2s P2 = Pe2y Pe3 = Pes» °°

“all parameters the same for ¢ and ¢”
Hyg b1 FPe1> Pez = Pe2s b2 = $e2s Pt3 = Pes> *°°

“all parameters the same for ¢ and c, except for ¢,”
Hyy: $e1 #de1s Pe2 FPe2s P2 = e2s Des = Pes> *°°

“all parameters the same for ¢ and c, except for ¢;,p2”
Hyy: $e1 £ dc1s Pez #De2s P2 FPe2s Pt3 = Pess " °

“all parameters the same for ¢ and c, except ¢,,p, and ¢,”
Hk-l,dv: ¢h 7+'¢ci’ i= 17 ey k-1 andPu #Peis i= 2; osey k

“all parameters different for ¢ and ¢”

In the following sections, we present more details on models Ho, Hy4, and Hg, giving, in
particular, point estimators and variances and covariances.

2.4.4. Model H

Under model Hy, all the parameters for treatment and control groups are assumed to be
common. Therefore, the minimal sufficient statistic is

MSS = {r.ls ooy Tials M 25 00y Mgy },

which is the usual Jolly-Seber case, with all statistics pooled across groups. Recall that
r;=ry +rgandm; = my + my. Also, thisresultsinz; = z; + z; and T = Ty + T
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The parameter estimators under model H,, are structurally the same as those given for
model Hy; 4. We give these estimators below for comparison with results under model Hy 4 4:

ri [mia  ziaR ]
; = > + = : , i=1.,k-2;
a" R.i [ T.,s'+1 T.,i+1r.,i+1_
by = ZEL
*- Ryii’
A m;g .
pi=————, i=2,.,k-1.

mg+z;Rfry’

The variances and covariances of the above are structurally identical to those given for the
treatment group in Section 2.4.2; one just replaces the subscript ¢ with a period “.” (i.e., pool
over ¢ and c¢) throughout those variance-covariance formulae. For that reason, and because
RELEASE computes these variances and covariances, we do not explicitly give their formulae
under model H,,. (Note: all parameter estimators, variances, and covariances under all models
for the complete capture history are given in Section 3.1.3.)

2.4.5. Model H, ¢

Model Hyy has all parameters common except the first survival rates (¢ #¢.1). This
model is reasonable if the treatment effect wears off completely by the second sampling time
(i.e., is an acute effect).

This is an important model, so we present (for k = 4) the conditional expectations
E (my; | Rg) and E (my; | Rs) in Table 2.14. Model H,4 is closely related to models con-
sidered originally by Robson (1969) and Pollock (1975) for temporary trap response and to the
age-dependent version of the Jolly-Seber model described by Pollock (1981b).

The minimal sufficient statistic under H,g is

MSS = {rtl’ Te1s T2y ooy Tok-1s 110 25 oony m.,k-l} .
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Table 2.14. - Expected numbers of recaptures E (myy; | Ry;) and E (g5 | R.;) for the complete capture
history protocol (k = 4) model H,4

Number recaptured at dam j, myy

Releases

Ry j=2 3 4 Total
Treatment group
Ry R,dpa Ruydnq:60s Rudngstaqasbd Ry
Ry, Riatps Riaaq:¢04 R
Ris Riséps Rk
Control group
Ra Ra$aps R19aq:90s Rorba1q2$:9:804 R
R, Readps Re2$:q:604 R
Res Resdw, Rk

The parameter estimators under model H,4 are:

&: _ _":_1 ma + z2R 3
! Ry | T2 Tors

1

.

’

3 Ter (M2 z2R 5
c1
ren [Tz Tara

ri [maa  zZiaReal . )
&= + L i=2.k-2;
R; | Tin T.,.'+1".,.'+1j

*

T k1
-1DR = —R’ ; and
kel

m;
m; +z; Rifrs’

h

|

It
N
X

1]
[y
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Our recommended definition of the treatment effect (see Chapter 1.5) under model H,
is

st
¢cl
hence, S = }l, which gives the simple result
cl
3, _ r1/Ra )
rcl/Rcl

The theoretical variance of 3‘ is

A n a 1 1 1. 1
= 2 |—.—— + —- .
Vaf(S) (S) [rtl Rtl Te1 Rcl ]

The variances and covariances of the  and p are:

ra 25T,

var(@,,) is as above with subscript ¢ replaced by subscript c;

far ) = [i ‘7 * Gn? [ e ]

Tisl

2
r- m-
+ (Gin1)? [1- "*‘] [ ks ] ] i=2.,k-2;

R; Zi1Ti

~ A A A 1 1 1 1 3 .
var(p) = (pidi)° [r—? e +z_,-]’ i=2.,k-1;
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sovha, ) = b fodia [i : i] :

cov(@.1, ¢2) is as above with subscript ¢ replaced by subscript c;

4

A " 1 1 .
o, ) = oo [ ] ek
\r.,:'+1 Wi+l

, rs

1 R,
R . . . 1 2
cov($e1, P2) = B P2 (@2)° ;; ) _15—2— * Z2 ;

cov(@.1, P2) is as above with subscript ¢ replaced by subscript c;

r; R;

eOV@i,PAi);&'ﬁiéi[l : ], i =2,..,k-2; and

1.t
~ A \ A ~ 2 1 1 R.,i+1 .
COV(&,',p,-,,,l) = '&ipnl (Gi+1) - + , =2,
ris1 Rin Zis1

2.4.6. Model Hy,

In model Hyy, it is assumed that only ¢; and p, are affected by the treatment. Hence,
this model has all parameters common except the first survival rate (¢, #¢.1) and the first
capture probability (p;2 #p.2). Again, it is informative to present the expected data values
E (my; | Rg) and E (my; | Ry;) as in Table 2.15. Model Hy, is closely related to a temporary

trap response model originally presented by Pollock (1975).
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Table 2.15. ~ Expected numbers of recaptures under model H,, for the complete capture history
protocol (k = 4).

Number recaptured at dam j, my;

Releases
Ry ji=2 3 4 Total
Treatment group
Ry Raydipea Riyh.1Gu26D5 Riy$1Gi2629 3604 Ryl
Ry Ratps  Rabrdsbops Ring
Ry Risésp.4 Ry3)
Control group
R, Robespea Rf1gcabadls Ro1®19ca$aqs$D4 R
Rc! RCMS Rc?MS@‘ RCZAB
R, Reab. Resxs

The minimal sufficient statistic under H,, is given by

MSS = {ri1, 7e1,7 2, <oy T j1s M2y Mog, Mg,y ey Mg }

The parameter estimators under model H, are:

b

& T ‘mt2 + ZaR o
L= te el
Ry | Tig Tyoro

>

Te1 | Me2 + Z.2R 5
Ry | T,z Tora

ra

b

miv1 Z iR 41 } ;
3

T;n Tiilis1

!
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( } Tkl |
(B = ’

R s
Pz = M2 .
t2 — s
My + ZioR o /r 2
Dez = ez ; and
2 — ’
Mg + Z.oR 2 /r 2
" m; . .
pi=—————, i=3.,k-1.

mg + z;Rifri’

The effect of treatment on survival from dam 1 to dam 2 is estimated by

P
&cl

§ =

(this ratio does not simplify under model Hj,). The difference between p,; and pg, also
represents a treatment effect, but not one of major interest. The estimated variance of S is

A A A2 1 1 1 1
= SE S S
va}'(S) ) { i Ry 11 Ra }

A A~ 21 1
+ (D2 - Pe2) [Z‘E]

(1 /\2) Peadea + Peade2
)\2 Ti2 T2 ’

where the p;; and p,, are given above and )z = ra/Rg. Compare this formula for Yar(S)
under model Hy, to the var(S) under model Hyy. The first large term of the above is the
var(S ) under model H;4. The additional terms in the above reflect loss of precision in S when
one uses model H,, (actually that loss of precision is not great).
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The variance formulae do not show us the bias that S will have if model H 2p 1S true but
H,,is used. If model Hyy is true, S is essentially unbiased. However, if model H, is true and
one uses model H,4 as the basis of one’s estimator of S, we have, approximately,

A P2 + G2k
ES)y=§ ——m—.
®) De2 + e2d2

Using these formulae, one can evaluate bias and precision of S if model H. 2p is true but model
H,4is used for data analysis.

The variances and covariances of the above estimators of the ¢ and p are:

2
¢ PFARCY I S S ACH [ S S 7 N PR TN
var(g;) = (B1) [ru Re; (g:2) 72 Ra (g:2) R | zaTe |’

Var(@,,) is as above with subscript ¢ replaced by subscript c;

T, Wi+l R.,i +1

far(@) = B [%-R%+(&,-u)2[ 1 ]

2
Ti+1 ] m i1

+(éi+1)2[1-R‘1 ], i=2:-u,k'2;
i+

Zil i1

~ A ~ 2 1 1 1 1 .
var = —_— -t — + —;
(?e2) (&tz‘hz) [r.2 R, o 20

var(p,») is as above with subscript ¢ replaced by subscript c;

~ A N 1 1 1 1 .
var(p) = (pig:)° [;T'R_ + - +Z], i=3.,k-1;

A A A 1 1
COV(‘z‘u, &cl) = $¢1¢It2$clqc2 [_‘ - K‘;] H

r2
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Sovha, o) = P [—1— : R%—] :

¢ov(d.1, $2) is as above with subscript ¢ replaced by subscript ¢ ;

~ ) 1 1 .
ot ) = i [ ] 12k
£+1

Tisl

e

- A~ a2l 1 1
cov(&,l, &cz) = '$e1pt2(‘h2) - "R +
2 2

cov(@,1, De2) is as above with subscript ¢ replaced by subscript ¢ ;

1 1)

EOV(%, ﬁcz) = '&tlﬁcZétZéc2 {_ "R 5
; ] 2 )

3\

A ~ ~ ~ ~ 1 1
COV(&cl,Pcz) = '&cll’czqczqzz [—' - —R H
T2 2 |

a a A A 1 1
cov($a, Pr2) = Sabeadea [_ RS ] ;
ra 2

¢ov(ds, Pe2) is as above with subscript ¢ replaced by subscript c;

Sov(e, Pi) = dbidi [—rl- . 7{1—} , i=3.,k-2; and
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. T i+l
I Coa ~ ~ 2 1 1 R.,i+1 i =3 k-2
Cov((i, Pis1) = HiPir1(dis1) — Rt i=3.,k-2.
S+l i+l RS

2.4.7. Comments on Models Hyg to Hy; ¢4

The remaining models in the sequence, i.e., Ho4 through Hy , 4, are not discussed here in
detail. For each of these models, explicit estimators of the parameters are given in Section
3.1.3. The estimators of ¢; and ¢,y, hence, S = ¢ /4.1 and var(S) are identical for all models
Hyy through Hy 4 (general results for Hy. 4 are given in Section 2.4.2). In particular, for
S = &1/3.1 under any of these models,

farS) = (5)? [[—L-R—l-+ L ]

i t1 ro1 Ra

ARCY B T T AT N O S
+ (th) [ftz R¢2 (qCZ) Tea Rc2

A 2 A s A 2 . 4
(1-XM2) DPi2ge2 N (1-X2) Pe2de2
S\tz Ty Ac2 Te2 ’

where :\¢2 = r,z/th, :\,,2 = 7,9/R.2. Compare this variance to var(g') under models Hy4 and
Hay,.

Program RELEASE computes results for these models and does the between-model
tests. In fisheries or other experiments involving a treatment survival effect that is predom-
inantly acute, models H,4 and Hy, are by far the most useful models. If most new releases of
fish (or other test animals) are at occasion 1 and capture probabilities are low, the only param-
eters estimable with good precision are 1, de1, Pr2, and p.2, because the releases Ry and Ry
at occasions i = 2, ..., k - 1 are so small relative to R,; and R,;. If these releases at occasion 2,
..., k - 1 are increased, other models in the sequence allow efficient parameter estimation.

With an acute treatment effect, the design having no new animals introduced after occa-
sion 1 is effective. If the treatment effect is chronic and capture rates are not too high, this
design is poor. With chronic effects, one needs efficient estimators of all the ¢y, ¢, i = 1,2,
..., k = 2; it is then important to have the full sequence of models. Alternative model sequences
may then also be important. For example, one may want to have py = pei, i = 2, ..., k with
only the ¢ and ¢; showing a possible effect. Such models do not have closed-form estimators;
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rather, their analysis requires numerical methods (which can be done by using program SUR-
VIV in conjunction with RELEASE).

2.4.8. On Alternative Forms of the Estimators

Much of the literature on the Jolly-Seber model presents the estimators of ¢; and p; in a
different form than we have used here (see, however, Brownie and Robson 1983). For exam-
ple, one would usually see

A

&,=_A__£"+_1_
M;-m; + R;
and
A my
Di = AA{, s
where
iy = my + 2

This manner of presentation is tied to the heuristics of early capture-recapture develop-
ments wherein the emphasis was (initially) on estimating population size. That emphasis
motivated concentration on the number of marked (and unmarked) animals still alive in the
population at occasion i: the M;. We could have followed this practice; however, theoretical
derivations and expressions of formulac are simpler under the multinomial modeling
approach. In particular, variances simplify greatly. Results are (or would be) the same under
either approach. To illustrate this, substitute M; and M;,, into the above formula for ¢; (the
subtle part is knowing that 7;,, = r; + 2,):

X
3
+
=
!
X
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hence,

r; [mi+1 N Ziv1Ri1

R;

Tipn Tiy1liva

Compare the form of the ¢; above with that in any of the formulae for ¢ presented earlier in
this chapter: it is the same.

2.4.9. Tests of Assumptions

We distinguish two types of assumption tests: (1) goodness of fit, separately by treat-
ment group, to the Jolly-Seber model, and (2) tests among treatment groups to determine the
extent and nature of the treatment effect. The latter tests may be thought of as tests made
between models in an attempt to select the most appropriate model. We presented this testing
material in detail in Chapter 2.1. Program RELEASE computes all the tests discussed in that
chapter.

Each type of test involves a series of contingency tables. The goodness of fit testing, as
we develop it here, involves only the subcohorts (based on capture history) at each release
occasion. Under the complete capture history protocol, there is maximal information for
goodness of fit testing. TESTS 2 and 3, taken together, constitute the goodness of fit testing
under the complete capture history protocol. Details of these tests are given in Chapter 2.1.

TEST 1 and its subcomponents provide the test between models. Given that the good-
ness of fit testing confirms the Jolly-Seber assumptions (time-specific parameters, ie., no
behavioral effects), it is reasonable to use TEST 1 to select a best model. “Best” means the
model with the fewest parameters that fits the data and is biologically reasonable (one can get
good-fitting models that are not biologically reasonable). TEST 1 is not unique to the com-
plete capture history protocol, and we have presented it in Chapter 2.1. The first few tests in
the TEST 1 sequence are especially important in the context of the hydroelectric fisheries
experiments. '
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24.9.1. TEST LRI1. - The test of whether ¢; = ¢,;, given all the other parameters are
equal, is computed from the 2 x 2 table

3 Ry -1y
Te1 Rcl -Te1

The test computed from this table is the usual chi-square contingency table test. The alterna-
tive hypothesis is that ¢; #¢.;. TEST 1.R1 is equivalently testing that S = 1 versus S #1
(S = #1/¢c1). Provided that the treatment effect is mostly a direct, acute effect, and that
model H,4 holds, TEST 1.R1 is one’s best test for a significant treatment effect.

24.9.2. TEST 1.T2. - The next test in the sequence tests that model H,4 holds versus
the alternative model H,,. TEST 1.72 can also be considered as a determination of whether
Pr2 = Dc2, given ¢y # ¢,y but all other parameters are equal. The test is based on the 2 x 2
contingency table

Mgz Z2
meo Ze2

It is labeled TEST 1.T2 because 1,5 + 2,5 = Tya. If this test fails to reject and the
composite results of TESTS 1.R2, 1.T3, ..., 1.Rk - 1 (the rest of the TEST 1 components) fail to
reject, one is justified in concluding that model Hyy is the appropriate model. If, however,
TEST 1.72 rejects model H,y4, one proceeds to a closer examination of the next model in the
sequence, Hy,.

24.9.3. TEST 1R2. - The test of whether ¢» = ¢.2, given ¢; #¢.; and pi #p.2 but
every other set of parameters is equal, is computed from the table

2 Ryp-ro
Te2 Rcz -T2
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If this test does not reject (and the remaining components of TEST 1 do not reject), we con-
clude that model H, adequately describes the data. Thus, in this case, one has shown a treat-
ment effect on both ¢, and on p,. This result is conceivable in fisheries experiments, although
it has never been tested. Even if H, is the model selected, the best estimator of the treatment
effect on survival is still S = &:1/3.1; but now the estimators of ¢; and ¢,; are those computed
under model H,,, not those from model H .

2.4.10. Comprehensive Example

In Chapter 1.3 we introduced our general numerical (simulated) example data set. That
example has k = 6 and the true model is Hy4; Table 1.2 gives the values of the parameters.
For the complete capture history protocol, the data one will start from, for data analysis, will
be either the capture history matrix (such as that shown in Table 1.1) or the set of full m-
arrays (see Tables 1.3 and 1.4). For the analysis of these example data when RELEASE is
used, the input form is the capture history matrix, as shown in Table 1.1; 22 pages of output
are then generated. The first page of output (see Table 2.16) gives various data summaries.
TEST 3 is then computed and summarized (Tables 2.17 and 2.18), followed by TEST 2
(Tables 2.19 and 2.20). The rest of the output consists of an analysis under each possible
model and the corresponding between-model test components of TEST 1 (Tables 2.21-2.23).
The first model presented is Hy; 4, followed sequentially by models where more of the param-
eters have common values. Thus, model H, is the last model considered.

Not all 22 pages of output are presented here. The interested reader is encouraged to
obtain RELEASE (which comes with these example data) and to run these data and other
analyses as an integral part of learning the methods discussed in this monograph. The sum-
mary page (Table 2.16) gives the data as m-arrays, by group, and the summary statistics
R,r,m, and z.. Note also that RELEASE recognizes that all capture histories start with a
one (1), i.e., no new fish were released after dam 1. Accordingly, adjustments to TEST 3 are
made automatically,. RELEASE will also handle Jolly-Seber data involving new releases as
well as releases of previously marked animals at each occasion.

Table 2.17 shows all the components computable here for TEST 3 for the treatment
group (group 1). This same set of tests is repeated for controls (group 2). The format is to
print the test name, the corresponding table, and the test result. As part of the (usually) 2 x 2
tables, the data are shown as well as the expected cell values (under the null hypothesis) and,
for each cell, the value of (O - E)?/E, which is labeled as “C.” This pattern is used by
RELEASE for all chi-square contingency table tests.

All components of TEST 3 are summarized in Table 2.18. For example, the three
separate chi-squares for TESTs 3.SR3, 3.5R4, and 3.SR5 for group 1 sum to 0.7845; this sum-
mation constitutes TEST 3.SR. None of the test components here lead to rejection of the
(general) null hypothesis that recapture probabilities are independent of capture history at
time of release. The overall result for TEST 3 is a chi-square value of 3.9387 with 10 df; this
result is not statistically significant. Thus, based on the goodness of fit information for TEST
3, the Jolly-Seber model would not be rejected for these data.
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Table 2.16. — Summary output from RELEASE for the general numerical example under the complete

capture history protocol.
Observed Recaptures for Group 1
Treatment group
i R(i) m(i,j) r(i)
j=2 3 4 5 6
1 30000 1029 238 1669 549 590 4075
2 1000 11 73 17 27 128
3 235 20 7 5 32
4 1677 43 50 93
5 590 19 19
m(j) 1029 249 1762 616 691
z(j) 3046 2925 1195 672 0
Observed Recaptures for Group 2
Control group
i RCi) m(i, j) r(i)
j=2 3 4 5 6
1 29000 1104 247 1832 571 641 4395
2 1071 13 75 19 29 136
3 250 17 4 10 3
4 1862 50 52 102
5 616 26 26
m(j) 1104 260 1924 644 758
2(j) 3291 3167 1274 732 0
Sums for the above Groups
m. 0 2133 509 3686 1260 1449
z. 0 6337 6092 2469 1404
R. 59000 2071 485 3539 1206
r. 8470 264 63 195 45

Data type is Complete Capture Histories.

ALl capture histories have a 1 for occasion 1,
so tests will ignore this initial release.
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TEST 2 contributes additional, independent goodness of fit (to Jolly-Seber)
information. These tests are based on the cohort data summarized in the m-array
representation of the data.

Table 2.17. ~ Results of TEST 3 (goodness of fit) applied to group 1 (treatment) data for the complete
capture history protocol data of the general numerical example.

Goodness of fit test of seen before vs. not seen before
against seen again vs. not seen again by capture occasions.

Test for Group 1
Treatment Group

TEST 3.SR3: Animals captured on occasion 3
4rmmm- Hoeene- +
op 1] 10 | 1
E| 1.4 9.6]"
c| 0.1} 0.0]
4o 4mmme-- +
o] 31 | 193 | 224
E| 30.6] 193.5]
c| 0.0 0.0]
Fommne- $ommman +
32 205 235
Chi-square=0.2010 (df=1) P=0.6539
Fisher’s Exact Test P=1.0000

* % WARNING * * One or more expected values were < 2.0.

TEST 3.SR4: Animals captured on occasion 4

Fommm- Frmmm—- +

o] 5 | 8 | 89
E|] 4.9] 84.1]
c|] 0.0] 0.0}
LLEE R L $occaca +

of 88 |1500 |1588
E| 88.1]1580.9]
c| 0.0} 0.0]
4mmee-- S Lt +

93 1584 1677

Chi-square=0.0009 (df=1) P=0.9755
Fisher’s Exact Test P=1.0000
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Table 2.17. - Continued.

TEST 3.SR5: Animals captured on occasion 5
L R +
of 1 | 63 | ¢é4
Ef 2.1] 61.9|
c] 0.5] 0.0]
O decemen +
o] 18 | 508 | 526
E} 16.9] 509.1]
cj 0.1] 0.0
$oomm- e +
19 57 590
Chi-square=0.6331 (df=1) P=0.4262
Fisher’s Exact Test P=0.5098

Cumulative result of TEST 3.SR over occasions for group 1
Chi-square= 0.8350 (df=3) P= 0.8411 )

Goodness of Fit Test of seen before versus not seen before
against when next seen again by capture occasions.

Test for Group 1
Treatment Group
TEST 3.Sm3: Animals captured on occasion 3
EXEEEEE $mmmmen +
o] 19 | 12 | 3
E] 19.4] 11.6]
c] 0.0] o0.0]

o 1] o0 ] 1
E| 0.6] 0.4
c| 0.2] 0.4

20 12 32
Chi-square=0.6194 (df=1) P=0.4313
Fisher’s Exact Test P=0.1000

* * WARNING * * One or more expected values were < 2.0.
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Table 2.17. - Continued.

133

TEST 3.Smé: Animals captured on occasion 4

R L 4mmmm- +
o] 40 | 48 |
E| 40.7] 47.3|
¢l 0.0] 0.0
-emmea 4----e- +
of 3| 2|
E| 2.3] 2.7]
c| 0.2] 0.2]
D dommom- +
43 50

88

93

Chi-square=0.4027 (df=1) P=0.5257
Fisher’s Exact Test P=0.6595

cumulative result of TEST 3.Sm over occasions for group 1

Chi-square=1.0220 (df=2) P=0.5999

Table 2.18. — Summary of TEST 3 (goodness of fit) results for the complete capture history example data.

summary of TEST 3 (Goodness of fit) Results
Component Chi-square

3.Sm

TEST 3
3.SR3
3.SR4
3.SR5

0.2010
0.0009
0.6331
0.8350
0.6194
0.4027
1.0220
1.8570
0.2798
0.0128
0.3633

df

- e = VTN N e

P-level Sufficient Data

0.5467

Yes
Yes

No
Yes

No
Yes
Yes
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Table 2.18. - Continued.

Group 2 3.SR 0.6558 3 0.883%
2 3.sm3 1.2548 1 0.2626 No
2 3.5m4 0.1712 1 0.6791 Yes
Group 2 3.Sm 1.4259 2 0.4902
Group 2 TEST 3 2.0817 5 0.8377
ALl Groups TEST 3 3.9387 10 0.9501

Table 2.19 presents results of TEST 2 for group 1. Each component of the overall test is
presented (by group), followed by a summary table of results (see Table 2.20). The overall
goodness of fit test statistic (to the Jolly-Seber model) is shown in Table 2.20: x2 = 11.10 with
22 df; it is not significant. This nonsignificance provides the evidence that our general assump-
tion about parameters being only time-specific is plausible; thus we can confidently proceed to

select a model (i.e., evaluate the treatment effect).

Table 2.19. — Results of TEST 2 (goodness of fit) applied to group 1 (treatment) data for the complete
capture history protocol data of the general numerical example.

Goodness of fit test of recaptures partitioned by rows.

Test for Group 1
Treatment Group

TEST 2.C2: Test of row 1 vs. row 2
$omccna $ocncad LA R Formmme +
0] 238 |1669 | 549 | 590 |[3046
E| 239.0]1671.7| 543.2] 592.1|
c] 0.0] o0.0] 0.1} 0.0]
ESEETR Foemma $oemmen $memmen +
op 1 | 73 | 17 | 27 | 128
E| 10.0] 70.3}] 22.8| 24.9]
c|] 0.1] 0.1 1.5] 0.2}
Fomemnn $omemnn Fooman- dommme- +
249 1742 566 617 3174

Chi-square=1.9445 (df=3) P= 0.5840
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TEST 2.C3: Test of rows 1-2 vs. row 3

Y i $-meme- +
o[1742 | 566 | 617 |2925
E|1742.9| 566.8| 615.3|

c| ©.0] 0.0 0.0
4o R i +
o 20 | 7| 5 |
E|] 19.1] 6.2] 6.7
c| 0.0] 0.1] 0.4
Fommee- 4------ 4mmm--- +

TEST 2.C4: Test of rows 1-3 vs. row 4

Chi-square= 0.1015 (df=1) P= 0.7500

4mmm--- e +

0| 573 | 622 |1195
E| 571.5] 623.5|

c] 0.0] 0.0
temeon- e +

o] 43 | 50 | 93
E| 44.5] 48.5]|

c] o0.0] 0.0
dmmmae- mmm——- +

616 672 1288

32

1762 573 622 2957
Chi-square= 0.6003 (df=2) P= 0.7407
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Table 2.20. — Summary of TEST 2 and overall goodness of fit results for the complete capture history
example data.

Summary of TEST 2 (Goodness of fit) Results
Group Component Chi-square df P-level Sufficient Data

1 2.c2 1.9445 3 0.5840 Yes

1 2.C3 0.6003 2 0.7407 Yes

1 2.C4 0.1015 1 0.7500 Yes
Group 1 TEST 2 2.6463 6 0.8518

2 2.C2 1.8265 3 0.6092 Yes

2 2.C3 2.4691 2 0.2910 Yes

2 2.C4 0.2175 1 0.6409 Yes
Group 2 TEST 2 4.5131 6 0.6076

All Groups TEST 2 7.1594 12 0.8469

Goodness of Fit Results (TEST 2 + TEST 3) by.Group
Group Chi-square df P-level

1 4.5033 N 0.9528
2 6.5949 N 0.8309

Total 11.0981 22 0.9733

Results for model Hyy are shown in Table 2.21. In general, for any model, RELEASE
presents the parameter estimates that differ by group, and then estimates of parameters that
are the same for all groups. There are no parameters common to both groups for model
Hy 4 (Hsg in this case). In addition to the ¢ and p, the ratios S = ¢4;/$.; are shown along
with these standard errors. For example, from Table 2.21, Sy is denoted as S(1,2,PHI(4));
thus, this S, is the ratio ¢y4/¢n. From other places in the output we know that v = 1
corresponds to treatment and v = 2 corresponds to control. Note how the standard errors of
S, to S increase substantially over se(S;). The true S (= S;) is 0.9; however, if separate
Jolly-Seber models were used as the basis of the inference, one would conclude that there was
no treatment effect on survival (e.g., the 95% CI on S under model Hy, is 0.69 to 1.08).

RELEASE also prints out some of the sampling correlations between estimates. Within
a treatment group, for example, Corr(Phi(1),Phi(2)) denotes the estimated sampling correla-
tion of ¢,; and $,o. From Table 2.21, this correlation is -0.443444 for the treatment group.
Correlations are also given between pairs of values for #s and @; these correlations are
relevant in obtaining variances and correlations of S;. Corr(1,2,Phi(1)) denotes the sampling
correlation of ¢;; and $; again we will know from the output which one (i.e., 1 or 2) is treat-
ment and which is control. Under model Hy, 4 all these correlations are zero. '
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Maximum Likelihood Estimates under Model HSPhi
95% Confidence Intervals

Parameter Estimate Standard Error

Estimates for Group 1
Treatment Group

Phi(T) 0.827529 0.066869
Phi(2) 0.876299 0.159697
Phi(3) 1.073454 0.203826
Phi(4) 0.924989 0.224379
p(2) 0.041449 0.003579
p(3) 0.011459 0.002006
p(4) 0.075588 0.007513
p(5) 0.028673 0.006475
Phi(5)p(6) 0.032203 0.007268
Corr(Phi(1),Phi(2)) -0.443444
Corr(Phi(2),Phi(3)) -0.771173
Corr(Phi(3),Phi(4)) -0.203837

Estimates for Group 2
Control Group

Phi(1) 0.931746 0.073081
Phi(2) 0.956006 0.176612
Phi(3) 0.976364 0.186592
Phi(4) 0.716070 0.150306
p(2) 0.040858 0.003423
p@3) 0.010077 0.001796
p(4) 0.076408 0.007256
p(5) 0.035804 0.006883
Phi(5)p(6) 0.042208 0.008101
Corr(Phi(1),Phi(2)) -0.424913
Corr(Phi(2),Phi(3)) -0.792323
Corr(Phi(3),Phi(4)) -0.213359

Ratio of Survivals between Groups
95% Confidence

Parameter Estimate Standard Error
$(1,2,Phi(1)) 0.888149 0.100016
Corr(1,2,Phi(1)) 0.000000

$¢1,2,Phi(2)) 0.916625 0.237864

Lower

0.696467
0.563292
0.673955
0.485205
0.034435
0.007528
0.060863
0.015983
0.017958

0.788507
0.609846
0.610643
0.421470
0.034149
0.006557
0.062186
0.022313
0.026330

Lower

0.692118

0.450411

0.958591
1.189305
1.472952
1.364772
0.048463
0.015390
0.090314
0.041364
0.046449

1.074984
1.302165
1.342085
1.010669
0.047566
0.013598
0.090629
0.049296
0.058086

Intervals

1.084181

1.382839
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Table 2.21. — Continued.

corr(1,2,Phi(2)) 0.000000
$(1,2,Phi(3)) 1.099440 0.296190 0.518908 1.679972
corr(1,2,Phi(3)) 0.0600000
$(1,2,Phi(4)) 1.291758 0.414375 0.479582 2.103934
corr(1,2,Phi(4)) 0.000000

S(i,j,Phi(1)) equals treatment effect estimated as
Phi(1) for group i / Phi(l) for group j.

Corr(i,j,Phi(1)) equals estimated sampling correlation
between Phi(l) for group i and Phi(I) for group j.

demmemmmesmccceannona ‘mememec-mmMmssemsesssms-eess-ceceesscess--em-cc-sscso-o- +

Table 2.22 shows the results for models Hyy, Hyy4, and Hy along with TEST 1 com-
ponents 1.R2, 1.T2, and 1.R1. The same pattern of presenting models separated by the TEST
1 component that tests between them is used for the other models not illustrated here. At the
end of the output regarding models, RELEASE gives a summary of TEST 1 (Table 2.23). The
strategy for examining this output should be to confirm goodness of fit, then scan the summary
of TEST 1 to see if one of the models in the sequence is acceptable (the most appropriate
model might not be). From Table 2.23, only TEST 1R1 leads to rejection. The null
hypothesis rejected is that model Hy fits the data. None of the other TEST 1 components
(nor the sum of 1.72 through 1.R5) reject. Consequently, the appropriate model for these data
is judged to be Hy,. Given that decision, one can proceed to the results for model Hyg (in
Table 2.22).

Table 2.22. — Estimates of parameters for model H,p, Hyg, and H, and some test components for the
complete capture history protocol data of the general numerical example.

TEST 1.R2: Test of Phi(2) equal across groups,
assuming higher order parameters are equal across groups.

L demmmm- +

0| 128 | 872 [1000

E| 127.5] 872.5|

c| 0.0] 0.9]

R Rt +

0] 136 | 935 |107

E| 136.5| 934.5|

c|] 0.0} 0.0]

R Fommee- +

264 1807 2071
thi-square=0.0048 (df=1) P=0.9448
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e m e e e e e e e m e e e e m—— e ——— e e m
| Maximum Likelihood Estimates under Model H2p
I

I

| Parameter Estimate Standard Error Lower

| e e e et cccemiceeaas
| Estimates for Group 1

| Treatment Group

| Phi(1) 0.830798 0.047782 - 0.737145

| p(2) 0.041286 0.002686 0.036021

| Corr(Phi(1),Phi(2)) -0.424661

I

| Estimates for Group 2

| Control Group

| Phi(1) 0.928307 0.053214 0.824008

| P2 0.041009 0.002642 0.035830

| Corr(Phi(1),Phi(2)) -0.426192

|

| Estimates for Pooled Groups

| Phi(2) 0.915510 0.118772 0.682718

| Phi(3) 1.023456 0.137818 0.753334

| Phic4) 0.804316 0.127598 0.554224

| p(3 0.010737 0.001341 0.008108
) 0.076008 0.005219 0.065779

| p(5) 0.032401 0.004744 0.023103

| Phi(5)p(6) 0.037313 0.005458 0.026617

| Corr(Phi(2),Phi(3)) -0.782090

| Corr(Phi(3),Phi(4)) -0.209588

| Ratio of Survivals between Groups
I

| Parameter Estimate Standard Error Lower

I .................................................................
| $¢1,2,Phi(1)) 0.894961 0.020341 0.855093

| corr(1,2,Phi(1)) 0.921665

95% Confidence Intervals

95% Confidence Intervals

0.924452
0.046550

1.032606
0.046188

1.148303
1.293579
1.054407
0.013365
0.086236
0.041700
0.048010

0.934829
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Table 2.22. — Continued.

TEST 1.72: Test of p(2) equal across groups,
assuming higher order parameters are equal across groups.
L Fommmn +
0]1029 |3046 |[4075
E|1026.2|3048.8]
c] o0.0] o.0]
4o e +
0]1104 3291 [4395
E|1106.8|3288.2|
c| 0.0] 0.0]
Fommana e +
2133 6337 8470
Chi-square=0.0196 (df=1) P=0.8887

Maximum Likelihood Estimates under Model H1Phi

95% Confidence Intervals
Parameter Estimate Standard Error Lower Upper

Estimates for Group 1
Treatment Group
Phi(1) 0.831435 0.047607 0.738126 0.924745
corr(Phi(1),Phi(2)) -0.426617
Estimates for Group 2
Control Group

I

I

I

|

l

I

| Phi(T) 0.927648 0.052962 0.823843 1.031452
| Corr¢Phi(¢1),Phi(2)) -0.427860

| Estimates for Pooled Groups

| Phi(2) 0.915510 0.118772 0.682718 1.148303
| Phi(3) 1.023456 0.137818 0.753334 1.293579
| Phic4) 0.804316 0.127598 0.554224 1.054407
| p€2) 0.041142 0.002474 0.036294 0.045990
| p(3 0.010737 0.001341 0.008108 0.013365
| P& 0.076008 0.005219 0.065779 0.086236
| p5 0.032401 0.004744 0.023103 0.041700
| Phi(5)p(&) 0.037313 0.005458 0.026617 0.048010
| Corr(Phi(2),Phi(3)) -0.782090

l

Corr(Phi(3),Phi(4)) -0.209588
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Parameter Estimate Standard Error Lower Upper
| mmmmmmes e i i e
| $(€1,2,Phi(1)) 0.896284 0.018040 0.860925 0.931642
| Corr(1,2,Phi(1)) 0.938042
e emmecceememeeeeecccecccmemcmccctemma-mmeseeeeemreseeemmmme----=-——==
TEST 1.R1: Test of Phi(1) equal across groups,
assuming higher order parameters are equal across groups.
Fommmee R i +
0] 4075 25925 |30000
E| 4307.]25693. |
c} 12.5] 2.1}
H------ R +
0| 4395 |24605 129000
E| 4163.]24837.|
c] 12.9| 2.2}
e R +
8470 50530 59000
Chi-square=29.6316 (df=1) P=0.0000
........................................................................... +
Maximum Likelihood Estimates under Model HO |
95% Confidence Intervals |
Parameter Estimate Standard Error Lower Upper
................................................................. |
Estimates for Pooled Groups
Phi(1) 0.878726 0.049456 0.781793 0.975660 |
Phi(2) 0.915510 0.118772 0.682718 1.148303 |
Phi(3) 1.023456 0.137818 0.753334 1.293579 |
Phi(4) 0.804316 0.127598 0.554224 1.054407 |
p(2) 0.041142 0.002474 0.036294 0.045990 |
p(3) 0.010737 0.001341 0.008108 0.013365 |
p(4) 0.076008 0.005219 0.065779 0.086236 |
p(5) 0.032401 0.004744 0.023103 0.041700 |
Phi(5)p(6) 0.037313 0.005458 0.026617 0.048010 |
Corr(Phi(1),Phi(2)) -0.434024
Corr(Phi(2),Phi(3)) -0.782090 |
Corr(Phi(3},Phi(4)) -0.209588 |
........................................................................... +

Ratio of Survivals between Groups
95% Confidence Intervals
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Table 2.22. — Continued.

TEST 1: Overall test of HO vs. H5Phi
Chi-square=31.3078 (df=9) P=0.0003

TEST 1 is an omnibus test for a treatment effect(s),
i.e., significant differences between groups. For the
complete capture history protocol and scheme A partial
capture history protocol, TEST 1 is an overall test of
equality of all survival and capture probabilities
among groups.

Table 2.23. — Summary of TEST 1 (model selection) results for the data from the complete capture his-

tory example.

TEST Chi-square df P
1RS 0.84 1 0.360
1715 0.28 1 0.607
1.R4 0.01 1 0.930
1.T4 0.21 1 0.646
1R3 0.16 1 0.690
173 0.15 1 0.694
1LR2 0.01 1 0.945
112 0.02 1 0.889
1R1 29.63 1 0.001

TEST 1 31.3078 9 0.001

Because the data were simulated under model H,4, we consider the model H,4 output in
Table 2.22 in some detail. The output for the other models is similar. Notice that treatment
and control survival estimates for the first period are ¢; = 0.8314 and ¢,; = 0.9276, which are
the only estimates allowed to differ for the treatment and control groups under this model.
The standard errors and confidence limits are also given for these estimates. The coefficients
of variation are 0.0476/0.8314 = 0.06 and 0.0530/0.9276 = 0.06 for treatment and control
groups, respectively. These coefficients of variation indicate that the estimates are relatively
- precise. The other survival estimates (@,2, du3, Poa) are relatively less precise (coefficients of
variation are about 0.12 to 0.14). The capture probability estimates are also presented; for
example, p, = 0.0411 (se = 0.00247).



2.4. COMPLETE CAPTURE HISTORIES 143

Perhaps the most important estimate presented is the treatment survival rate,

% _ 0834
3, 09276

= 0.896

(denoted S(1,2,Phi(1)), with §e(§) = 0.01804. The 95% CI on § is 0.861 to 0.932. Recall that
when model Hsgy is used, the standard error of the corresponding S is 0.10. The use of a parsi-
monious model has allowed us to say definitely that there is a treatment effect (either from
TEST 1.R1 or the CI on §).

Note again the meaning of some of the output: Corr(Phi(1),Phi(2)) is the sampling
correlation of @,; with either @y, €.g., under model Hgy, or with ¢, e.g., under models Hy,
and Hy4 where ¢y, varies by group, but ¢, is the same for both groups. For example, under
model Hy, the sampling correlation of ¢; and ¢, is -0.4247. Under Hy, the sampling correla-
tion of s and @, is -0.2096, this quantity being denoted by Corr(Phi(3),Phi(4)). Also of
interest are the correlations of ¢y and @,; for any i where these survivals are allowed to differ.
In Table 2.22, ¢ and ¢ are indexed as 1 and 2, respectively. Under model Hj,, the correlation
of ¢; and @, is denoted as Corr(1,2,Phi(1)) and equals 0.9217. Under model H4 the same
correlation is 0.9380. It is largely this strong, positive correlation that makes S = ¢ /.1 so
precise under these two models (a standard error of around 0.02 as compared to se(S) = 0.1
when model Hgy is used).

24.11. Likelihood Function for Models Hy ; ¢, Hop, H14

Our philosophy in writing this monograph is to present the theory along with the applied
results. Moreover, it is important that all users have a basic understanding of the nature of the
underlying theory. First, a sound theory must exist for survival experiments based on animal
release-recapture, and second, the theory must be based on specific assumptions and subse-
quent probability models for the experimental data. Although the full mathematical details
may extend beyond the training of some biologists, advanced training in quantitative methods
is becoming increasingly common. Consequently, we include a section that gives the probabil-
ity model formulae (likelihoods) for several models discussed in Chapter 2.4.

For a one-group Jolly-Seber study, the probability distribution of the number of fish
recaptured, r;, from those released, R;, at occasion i is the binomial distribution
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Pr{r; | R;} = [ﬁ,‘](x.-)" @-WR, i= 1, k-1,

X = E(ri IRt)/RS [Ol‘ X = ¢i(Pi+1 + qi+1Ai+1)] .

Similarly, one can consider the (marginal) probability distribution of m; given T; = m; + z; it
also is binomial:

Pr{m,- I T,} = [’:‘] ('r,-)m‘ (1 -’l',')Tl-ml N i= 2, sy k - 1,

where r; = E(m; | T;)/T;, or 1; = pi/(pi + qiXy)-

It has been proved (e.g., Brownie and Robson 1983) that the MSS (for estimating the ¢
and p) is representable as r; given R;, i = 1, ..., k - 1 and m; given T;, i = 2, ..., k - 1, and that
this conditioning on R; and T; renders these binomial distributions conditionally independent.
This means that for a one-group Jolly-Seber release-recapture study the probability distribu-
tion of the MSS is given as the products of 2k - 3 independent binomial distributions:

Pr{MSS } = II[ ](A.)" (1-x)%"

[’ﬁ [,Z,‘:] @™ @-m)" -mi] .

$=2

The above formula is the likelihood function for such a study; this probability distribution is
the basis for ML inferences about survival rates from Jolly-Seber data.

For model Hy 4 4, no parameters are in common across the two experimental groups. As
a consequence, it follows that the likelihood function for model Hy., 4 can be written as

[

X [lﬁ [IZC:] (e (1- r\ci)Rﬂ-'d] [

=1 ¢

>

-1

[Ttt](rh)mu (1 . ‘)Tﬁ mti]

[T ](Tc:)mc (1 7, )Tci mci].

_ kL (Ry; n Rn-r;x
Pr{MSS | model Hyag} = |TL [, |Qed™ (1- %)
i=1 "

:4: u,.‘:l

Il
[}

As we proceed to more specialized models in the sequence considered here, terms in the
above products collapse into single terms as we pool over various statistics.
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The likelihood (i.e., probability distribution) for the MSS under model Ho,, is
R R T, )
Pr{MSS | model Hy,} = [[,:11] Qer)™ (1- )™ '“] [[m‘;] (i2)™ (1 - 15)™ mﬂ]
Rc e =-Tc. Tc g -
X [[rul] (ACI) ' (1 il Acl)Rd I:I [[mcz] (Tcz)mcz(l = TcZ)T mc’}

= . k-1 K
X [ﬁ [I::] (/\_)n (1 - /\'_)RJ -r_x] [H [:;.:] (T,-)’"j (1 _ T,-)T" -m_‘} .

1=2 =3

Bear in mind that the identifiable parameters here are ¢, pia, do1, Pe2, and ¢, ...,
$r2> ($r-1Pk), P3s - Pka. There are 2k - 1 identifiable parameters and 2% - 1 terms in the
MSS. Basically, that is the reason one gets closed form estimators for this model. Finally, one
must also know that A; = (¢e.1px) and

At' = ¢l'(pi+1 + Qi+1/\'+1) ’ i = 2, eey k '2,

Di
T; = R 3,., k-1,
Y opit gk

Dv2
Tyg = —————, V=1¢
v2 p02+Qv2’\2, ’

and
Aﬂl = ¢vl1(pv2 + qv2’\2) y V= t, c.

Model Hy is developed from H,, by making the added assumption that p;; = p,,. This
results in 7,3 = 7,5 so that the two binomials involving 7,2 and 7,5 collapse to a single binomial:

Pr{MSS | model H1¢} = [[f:ll] (,\ﬂ)r“ (1 - An)R“ "t [[1::11] (Acl)rdl _ )\cl)Rd -m]

k- . S ‘
X ,:ﬁ [Ij:] (Ai)ﬁ - A.‘)RJ -n] 1—]1: [’z;:'] o mj(l B ft‘)T" "'H] .

1=2 =2

Note that now A1 = &1 (P2 + g2X2), A1 = ¢e1(P2 + ¢2X2)-
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Finally, assuming also that ¢y; = ¢, (hence, assuming model Hy), then &, = A;; and
the two terms in )1, A.; above reduce to the single term

[R] RN e

in Pr{MSS | model Hy} (the terms in )y, ..., ey and 73, ..., 741 from riodel H,4 remain
unchanged).

2.5. Partial Capture Histories

2.5.1. Introduction

The preceding chapters describe the analysis for data arising from two different marking
strategies. The most easily implemented strategy (Chapters 2.2 and 2.3) involves use of a dis-
tinguishing batch mark at the initial release site. The second strategy (Chapter 2.4) involves
use of distinct marks (or of a different batch mark at each recapture site) so that individual
capture histories can be followed for each animal. We have shown that this second method
provides more data and information but is not a feasible strategy in many situations. In order
to present a compromise between these two extremes in terms of feasibility and information
loss, we here describe two other experimental protocols, called schemes A and B, and the
analysis for resulting data. Both of these protocols provide information concerning second,
but not third or later recaptures; thus we refer to them as providing “partial capture histories.”

In both schemes A and B, an initial release is assumed in which batch marks distinguish
treatment and control groups. Both involve a second batch mark and removal. They differ in
that under scheme A a second batch mark, specific to the recovery site, is applied to all first
recaptures, whereas under scheme B only recaptures at dam 2 receive a second mark. Also,
all fish recaptured for the second time are removed under scheme A, whereas all recaptures
below dam 2 are removed under scheme B.

Before describing analyses for data generated by schemes A and B, we note that there
are other ways to generate partial capture history information. For example, adding a third
mark would provide information about third recaptures. Schemes A and B were chosen
because, provided there is no effect on survival due to handling and marking, they appear to be
the most practical ways to obtain information in addition to first recaptures. Also, in studies
where capture probabilities are low, they result in little loss of information relative to unique
marking. Neither scheme A nor scheme B should be used if the associated handling and
marking are likely to affect survival.
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Notation used in this chapter is the same as in Chapter 2.4, and the assumptions
and parameters on which model structure is based are the same here as in Chapter 1.4.

2.52. Scheme A

2.5.2.1. Introduction and presentation of data. — Upon first recapture, a fish is given
a second mark specific to the site of recapture. Upon second recapture, the fish is
recorded and then removed from the study population. Thus, for each fish recaptured,
the occasion of its last capture (release) is known, and the quantities my; and My, i = 1,
recapture data for scheme A is in Table 2.12.

This representation is illustrated by using data for the hypothetical example
displayed in Table 2.24. Note that the first two rows of the data arrays for treatment and
control groups are the same for scheme A as with unique marks (see Tables 1.5, 1.6, and
2.16). However, because fish are removed after the second recapture, releases and
recoveries at dam 3 and below are fewer under scheme A. However, for this example
where recapture rates are low, the differences are small.

Table 2.24. - Release-recapture data summarized as reduced m-array for the hypothetical example under

scheme A protocol.
Number recaptured at dam j, my;
Release Releases Totals,
site R, ji=2 3 4 5 6 Ty O Iy
Treatment group
1 30,000 1,029 238 1,669 549 590 4,075
2 1,000 11 73 17 27 128
3 224 19 7 s 31
4 1,588 40 48 88
5 526 18 18
Totals my 1,029 249 1,761 613 688
Control group
1 29,000 1,104 247 1,832 571 641 4,395
2 1,071 13 75 19 29 136
3 237 17 4 9 30
4 1,775 48 49 97
5 546 24 A4

Totals m; 1,104 260 1,924 642 752
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2.5.2.2. Models Ho, H14, Hap, Hag, -y Hra 4. — As in the case of complete capture his-
tories (Chapter 2.4), we consider a series of increasingly general models, Ho, H1g, Hap, Hoy,
.y Hy.1 4, corresponding to increasingly general assumptions regarding the equality of survival
and capture probabilities for treatment and control groups. The structure of each model is
represented in terms of matrices of expected values corresponding to the release-recapture
data matrices. For scheme A, model structures under Ho, H1g, Hop, Hog, ..., Hy.1,4 are exactly
as for the complete capture history data in Table 2.2. Statistical theory underlying estimation
and testing is, therefore, the same.

Estimable parameters of interest are as in Chapter 2.4 for the series of models
Hy, Hyg, Hop, Hay, ..., Hy.1 g Formulae for estimators, variances, and covariances are also as
in Chapter 2.4.

2.5.2.3. Testing between models. — To determine which model and estimators are
appropriate for a given data set, we compare models in the sequence Ho, H14, H3p, Hag,
Hy.4 4. This comparison is done in a certain order, starting with the most general models and
progressing to tests involving simpler models, as described in Chapter 2.4 for the unique mark
or complete capture history data. Theory and formulae for contingency table chi-squares are
exactly as in Chapter 2.4, but actual numbers of recaptures for cohorts released at dam 3 and
below are generally smaller for data collected under scheme A.

2.5.2.4. Goodness of fit tests. — Under scheme A, removal of all second recaptures
means that each my; or m; in a data matrix corresponds to a unique capture history. Thus, a
finer partitioning of the data into subcohorts, as described in Chapter 2.1, is not possible under
scheme A. Goodness of fit tests for the models in the sequence Ho, H14, Hap, Hag, -y Hr 1,9
are therefore based on TEST 2, computed from the my;- and my;-arrays as described in
Chapter 2.1. TEST 3 does not exist.

2.5.2.5. Comparing survival for treatment and control groups. — Of particular concern in
these studies is the comparison of survival rates, for treatment and control groups, between the
release and first recovery sites. The most appropriate test for making this comparison will
depend on the true underlying model, which is not known. However, the tests between models
and goodness of fit tests can be used to choose the model that seems most appropriate for a
given data set. The estimates ¢¢; and ¢.1 and variances and covariances produced when this
model is used are then the basis for making inferences about either the ratio ¢ /¢y or the
difference ¢¢; - ¢v1.

As described in Chapter 1.5, if the treatment effect is direct, 1- S = 1 - ¢ /4.1 measures
treatment-related mortality, and tests or confidence intervals on S become of interest. If there
is a strong, indirect treatment effect, then differences 4, - ¢ may also be of interest as meas-
ures of that treatment effect. With replicate lots (see Part 4), empirical variances for S or
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®c1 -d can be obtained and used in constructing tests or confidence intervals for the
corresponding parameters. When there is little or no replication, variances based on theoreti-
cal formulae must be used. Program RELEASE prints S; = ¢4/3 and the corresponding
standard error and 95% CI for each model and each period for which ¢; and ¢, are estimated
separately. Validity of these confidence intervals for S produced by RELEASE depends on
model assumptions being correct (so that theoretical variances are appropriate) and on sample
sizes being large enough to ensure that the distribution of S is approximately normal.

Confidence intervals for the difference ¢, - ¢ are not printed by RELEASE but can be
constructed as

(Bei - ) = zase(Bei - B6) »

where

se@ - ) = V var(Be) + var(@s) - 2cov(Bus, $)

and z, is the standard normal deviate chosen to give confidence level (1-a)100%. The
coV(Pesis ) = Corr(dei, di)se(Pei)Se(dx), where the correlation between these two estimators is
printed by RELEASE, and labeled as Corr(1,2,Phi(i)). Again, if variances and covariances
produced by RELEASE are used to obtain se(8, - ¢), the validity of the interval will depend
on model assumptions being correct.

Sample output in Table 2.25 is used to illustrate construction and interpretation of these
confidence intervals in Section 2.5.2.6.

2.5.2.6. Example. — Table 2.25 contains part of the computer printout for analysis of the
data arising under scheme A for the hypothetical example. Comparison of Tables 2.25 and
2.21 shows the similarity between results for the scheme A and complete capture history pro-
tocols. As indicated before, this similarity is a result of little information being lost by failure
to return second recaptures to the study population if recapture probabilities are low.
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Table 2.25. - Some test summary and example output for the hypothetical sample collected under scheme

| Maximum Likelihood Estimates under Model H5Phi |
| 95% Confidence Intervals |
| Parameter Estimate Standard Error Lower Upper

Estimates for Group 1
Treatment Group

I I
I I
| Phi(1) 0.827529 0.066869 0.696467 0.958591 |
| Phi(2) 0.862386 0.158975 0.550796 1.173977

| Phi(3) 1.092036 0.211044 0.678390 1.505681 |
| Phic4) 0.872132 0.216818 0.447169 1.297096 |
| P 0.041449 0.003579 0.034435 0.048463 |
| p(3 0.011644 0.002064 0.007599 0.015689 |
| pt&) 0.075497 0.007690 0.060425 0.090570 |
| p(5) 0.030359 0.007014 0.016611 0.044107

| Phi(5)p(6) 0.034221 0.007927 0.018684 0.049757 |
| CorrcPhi(1),Phi(2)) -0.438387

| Corr(Phi(2),Phi(3)) -0.771080

| Corr(Phi(3),Phi(4)) -0.206546 |
] Estimates for Group 2 |
| Control Group |
| Phi(1) 0.931746 0.073081 0.788507 1.074984 |
| Phi(2) 0.936700 0.175128 0.593448 1.279951 |
| Phi(3) 0.998507 0.194106 0.618059 1.378955 |
| Phi(4) \ 0.686250 0.149105 0.394003 0.978496

| p(2) 0.040858 0.003423 0.034149 0.047566 |
| p3 0.010285 0.001857 0.006646 0.013924 |
| pt&) 0.076293 0.007408 0.061773 0.090813 |
| PS5 0.037317 0.007429 0.022756 0.051878 |
| Phi(5)p(é) 0.043956 0.008773 0.026761 0.061151 |
| Corr(Phi(1),Phi(2)) -0.419859 |
| Corr(Phi(2),Phi(3)) -0.792805 |
| Corr(Phi(3),Phi(4)) -0.213136 |
| Ratio of Survivals between Groups

| 95% Confidence Intervals |
| Parameter Estimate Standard Error Lower Upper |
| wseeeoeeememeemeemes seseseesieos oeseessesnes seseseesses |
| s¢1,2,Phi(1)) 0.888149 0.100016 0.692118 1.084181 |
| corr(1,2,Phi(1}) 0.000000

| I

$(1,2,Phi(2)) 0.920665 0.241729 0.446875 1.394454
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Table 2.25. — Continued.

Corr(1,2,Phi(2)) 0.000000
$¢1,2,Phi(3)) 1.093669 0.299789 0.506081 1.681256
Corr(1,2,Phi(3)) 0.000000
$(1,2,Phi(4)) 1.270867 0.419606 0.448440 2.093295

$(i,j,Phi(1)) equals treatment effect estimated as
Phi(I) for group i / Phi(I) for group j.
Corr(i,j,Phi(1)) equals estimated sampling correlation

| |
| !
| I
| I
| Corr(1,2,Phi(4)) 0.000000 |
| |
| I
| I
I |
| between Phi(l) for group i and Phi(l) for group j.

R R R et +
L e e e L L L P T +
| Maximum Likelihood Estimates under Model H2p

| 95% Confidence Intervals |
| Parameter Estimate Standard Error Lower Upper

Estimates for Group 1

Ratio of Survivals between Groups
95% Confidence Intervals
Parameter Estimate Standard Error Lower Upper

| I
] Treatment Group |
| Phi(1) 0.830798 0.047782 0.737145 0.924452 |
| p 0.041286 0.002686 0.036021 0.046550 |
| Corr(Phi(1),Phi(2)) -0.419720 |
| Estimates for Group 2 |
| Control Group |
| Phi(h 0.928307 0.053214 0.824008 1.032606 |
| p(2) 0.041009 0.002642 0.035830 0.046188

| Corr(Phi(1),Phi(2)) -0.421233 |
| Estimates for Pooled Groups |
| Phi(2) 0.898918 0.117992 0.667654 1.130183 |
| Phi(3) 1.044057 0.143045 0.763690 1.324425 |
| Phi(4) 0.765901 0.125252 0.520387 1.011414 |
| p(3 0.010935 0.001383 0.008224 0.013646 |
| pt&) 0.075902 0.005335 0.065446 0.086358 |
| pt5 0.033977 0.005926 0.023930 0.044023 |
| Phi(5)p(6) 0.039179 0.005926 0.027564 0.050794 |
| Corr(Phi(2),Phi(3)) -0.782301 |
| Corr(Phi(3),Phi(4}) -0.210658 |
I |
I I
I I

| s¢1,2,Phi(1)) 0.894961 0.020341 0.0855093 0.934829 |
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Table 2.25. - Continued.

| corr¢1,2,Phi(1)) 0.921665
femeeeemesmmmememmemmemeeeeecceeccecceemmmmmeeee=ssemeseeeesmesee--se-=eco=
e e e mmemeeeeeece—c-eemmsmesememese-ee--eee-esee-ss-sce-sc—=ccccoo
| Maximum Likelihood Estimates under Model H1Phi

| 95% Confidence Intervals

| Parameter Estimate Standard Error Lower Upper

| mmememmes e eeeeaeieees cemieeiceioos omeeoeooeee
| Estimates for Group 1

] Treatment Group

| Phi(h) 0.831435 0.047607 0.738126 0.924745

| Corr(Phi(1),Phi(2)) -0.421653

| Estimates for Group 2

| Control Group

| Phi(1) 0.927648 0.052962 0.823843 1.031452

| Corr(Phi(1),Phi(2)) -0.422881

] Estimates for Pooled Groups

| Phi(2) 0.898918 0.117992 0.667654 1.130183

| Phi(3) 1.044057 0.143045 0.763690 1.324425

| Phic4) 0.765901 0.125262 0.520387 1.011414

| p(2 0.041142 0.002474 0.036294 0.045990

| 3 0.010935 0.001383 0.008224 0.013646

| pt&) 0.075902 0.005335 0.065446 0.086358

| p(5) 0.033977 0.005126 0.023930 0.044023

| Phi(5)p(6) 0.039179 0.005926 0.027564 0.050794

| Corr(Phi(2),Phi(3)) -0.782301

| Corr(Phi(3),Phi(4)) -0.210658

| Ratio of Survivals between Groups

| 95% Confidence Intervals

| Parameter Estimate Standard Error Lower Upper

| eeemmeme mmmmemmemmemee eemecmieieces ceecoceeaoee eeeeseeneos
| s¢1,2,Phi(1)) 0.896284 0.018040 0.860925 0.931642

| Corr(1,2,Phi(1)) 0.938042

e e mmmmmememmeemeeeeeceeeeceamseesesesmssssessseme-esssemsesemecoe
e e eemeemmemeemmememeeeeeece-ceesmseeseesesesssssmeceee-msem=m=eoon-
| Maximum Likelihood Estimates under Model HO

| 95% Confidence Intervals

| Parameter Estimate Standard Error Lower Upper

] Estimates for Pooled Groups
| Phic1) 0.878726 0.049456 0.781793 0.975660
| Phi(2) 0.898918 0.117992 0.667654 1.130183
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Table 2.25. — Continued.

| Phi(3) 1.044057 0.143045 0.763690 1.324425 I
| Phic4) 0.765901 0.125262 0.520387 1.011414 I
| p(2 0.041142 0.002474 0.036294 0.045990 I
| p(3) 0.010935 0.002383 0.008224 0.013646 I
| P4 0.075902 0.005335 0.065446 0.086358 i
| p(s) 0.033977 0.005126 0.023930 0.044023 [
| Phi(5)p(6)  0.039179 0.005926 0.027564 = 0.050794 I
| Corr(Phi(1),Phi(2)) -0.428974 |
| Corr(Phi(2),Phi(3)) -0.782301 |
| Corr(Phi(3),Phi(4)) -0.210658 i
T L T T LR e R +

Summary of TEST 1 (Between Groups Test) Results
Component Chi-square df P-level Sufficient Data

1.R5 0.6745 1 0.4115 Yes
1.75 0.2237 1 0.6363 Yes
1.R4 0.0095 1 0.9223 Yes
1.74 0.2361 1 0.6270 Yes
1.R3 0.1399 1 0.7084 Yes
1.73 0.1543 1 0.6944 Yes
1.R2 0.0048 1 0.9448 Yes
1.72 0.0196 1 0.8887 Yes
1.R1 29.6316 1 0.0000 Yes
TEST 1 31.0940 9 0.0003

summary of TEST 2 (Goodness of fit) Results
Group Component Chi-square df P-level Sufficent Data

1 2.C2 1.9445 3 0.5840 Yes

1 2.C3 0.5400 2 0.7634 Yes

1 2.C4 0.2045 1 0.6511 Yes
Group 1 TEST 2 2.68%90 6 0.8467

2 2.c2 1.8265 3 0.6092 Yes

2 2.C3 1.6054 2 0.4481 Yes

2 2.C4 0.2885 1 0.5912 Yes
Group 2 TEST 2 3.7203 6 0.7145

All Groups TEST 2 6.4093 12 0.8941
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Table 2.26. — Summary of estimates of various model parameters under model H;y for three protocols.
The data from the general numerical example were used.

Partial capture history protocol

Complete capture
history protocol Scheme A Scheme B
Parameters Estimates se Estimates se Estimates se
s 0.831 0.0476 0.831 0.0476 ) 0.831 0.0476
¥ 0.928 0.0530 0.928 0.0530 0.928 0.0530
& 0.916 0.1188 0.899 0.1180 Not estimable
3 1.023 0.1378 1.044 0.1430 Not estimable

Note that for any specific model, data collected under these two protocols give the same
values for ¢, and @,;, as illustrated below for model H,,4 Estimates of &2, &s, etc. are gen-
erally less precise with the scheme A data than under the complete capture history protocol.
The difference in precision, based on estimated standard errors for model H g4, is shown in
Table 2.26 to be small for the hypothetical example.

Estimates under models Hyy, ..., Hy, are not included in Table 2.25 but are included in
the output from RELEASE. For this example, tests between models with scheme A data and
with the complete capture history data lead to the same conclusion. The test of Hy versus Hyy
rejects Hy ()¢ = 29.63 with 1 df, exactly as in Table 2.23; see TEST 1.R1). Tests comparing
Hyy with more general models, though not identical to those in Table 2.23, fail to be
significant. Thus, H,4 is the most appropriate model for these data, suggesting a treatment
effect on survival that is negligible beyond dam 2. Examination of this treatment effect is car-
ried out by using model H,, estimates ¢¢; and ¢.;. Results given below are the same as those
derived from the complete capture history data. In particular, the model Hy4 estimate S,
denoted in RELEASE output as $(1,2,Phi(1)), is 0.896 with estimated se = 0.0180. The 95%
CI for S is 0.896 + (1.96 x 0.0180), or 0.861 to 0.932.

Using model H,4 estimates, Be1 - B2 = 0.9276 - 0.8314 = 0.0962. The standard errors
and correlation of §,, ¢ are given in Table 2.25 under model H 4. In particular, the correla-
tion is 0.9380, hence, the covariance of ., and @, is cov(.1,d1) = (0.9380)(0.05296)(0.04761)
= 0.002365. The corresponding standard error of the difference is

Se(@e1 - B1) = V(0.05296)% + (0.04761) - 2(0.002365)

= 0.0185.
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The 95% CI for the difference in treatment and control survival rates is 0.096 + (1.96 x
0.0185). With 95% confidence, the survival rate in the control group exceeds that in the treat-
ment group by between 0.060 and 0.132.

2.5.3. Scheme B

2.5.3.1. Introduction and presentation of data. — First recaptures at dam 2 (the first
recapture site) are given a second mark and released, and all recaptures at dams 3 to k are
removed from the study population. Thus, there are two releases for treatment and controls:
R;; and R,; in the initial release, and R;5 and R, double-marked releases at dam 2. Hence, at
sites 3 to k, first recaptures (m,y5, m.,;) can be distinguished from second recaptures (1725,
m.o;) because of the double marking and removal. The release-recapture data can be
represented symbolically as in Table 2.27.

For the hypothetical example, the data that would result from the use of scheme B are
presented in Table 2.28. These data correspond to rows 1 and 2 of the reduced m-arrays for
the complete capture history protocol (see Tables 1.5 and 1.6).

Table 2.27. - Symbolic representation of data for partial capture history, scheme B, protocol for & = 5

dams.
Numbers recaptured at dam j, my;
Release Releases ‘
site R, j=2 3 4 5 Total
Treatment group
1 Ry Mya LT My Mys Iy
2 Ry Mg My Mas ia
Total Ny myy myy Ny
Control group
1 R, Mg Mmeys Meyy Mmes T
2 ) ch Mg Mea Meas Tea

Total Meq mes My mes
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Table 2.28. ~ Release-recapture data for the hypothetical example under the scheme B protocol.

Number recaptured at dam j, my;

Release Releases Totals,
site Ry j=2 3 4 5 6 Tei OT Iy
Treatment group

1 30,000 1,029 238 1,669 549 590 4,075

2 1,000 11 73 17 27 128
Totals, my; 1,029 249 1,742 566" 617

Control group

1 29,000 1,104 247 1,832 571 641 4,395

2 1,071 13 75 19 29 136
Totals, m; 1,104 260 1,907 590 670

2.5.3.2. Models. - Again, we may conceive of a series of increasingly general models to
describe the data resulting from scheme B. However, because these data are more limited
than those resulting from scheme A or unique marking (two releases compared to k - 1), there
are fewer estimable parameters. The underlying statistical theory is presented in Section 2.5.6.

Model H,4 assumes that survival may differ for treatment and control groups as far as,
but not beyond, dam 2. All recapture probabilities are assumed to be the same for the two
groups. The structure of Hy4 for scheme B data is represented in terms of matrices of
expected numbers of recaptures in Table 2.29. Note that the structure of the first two rows in
Table 2.14 is identical to those in Table 2.29. Estimable parameters of interest are ¢, @1,

Table 2.29. - Expected numbers of recaptures for model Hy, and scheme B data, k = 5 dams.

Number recaptured at dam j, m,;

Release Releases

site Ry j=2 3 4 5
Treatment group, E (my;)
1 Ry Ruydups Raduga60s Ridagaagsbap Ra$uq:$:9:$:9 $0s
2 Ry Ri2éops Rix#aqsbaPa Ri3$29:%:9 S@s

Control group, E (1.1;)

1 R, Rabapa R191929Ds R1¢19:1$:9 3804 R161926:93$:94805
2 R, Readops R.2¢2q 384 R3$2q:8:9 B0




2.5. PARTIAL CAPTURE HISTORIES 157

and p,. From the expectations in Table 2.29, separate estimation of ¢; and p;,; for i >2
appears impossible. Formulae for the estimators &1, d.1, and p,, and variances and covari-
ances are the same as for model H,,4 with complete capture history data (see Section 2.4.5.3).
Numerical values of estimates @1, .1, and p, for the hypothetical example will be the same
when data are collected under the complete capture history, scheme A, or scheme B protocols,
as noted in Section 2.5.2.6. To illustrate computation of ¢; for model H,4, we use summary
statistics from Tables 2.28 and 2.30 for the hypothetical example. Thus,

1 [ z2R 3 ]]
—_— M2 +
mao +2zg ras

4075 [ 1 [2,133 . 6,337(2,071)”

(31
1

Ry

30,000 | 8,470 264

0.8314,

which agrees with output for model H4 in Table 2.30.

Model H,, assumes that ¢; and p, are different for the treatment and control groups,
but that other parameters are not. The model structure, represented in terms of expected
numbers of recaptures, is determined from the first two rows of each matrix in Table 2.15.
Estimable parameters of interest are ¢4y, @1, Pr2, and pco. Formulae for estimators and
covariances are as for model H,, and complete capture history data (see Section 2.4.5.4).
Again, numerical values of estimates for the hypothetical data will be the same under the three
protocols (complete capture history, scheme A, and scheme B). Similarities can be seen by
comparing computer outputs displayed in Tables 2.22, 2.25, and 2.30. Computation of ¢ and
Pez is illustrated below, based on data for the hypothetical example displayed in Tables 2.28
and 2.30.

431 1 ZioR 2
= — +
b Ry |myz + 22 2 rs ”
- 4,075 1 3,046 (2,071
= O |~ 17029 4 22
30,000 | 4,075 | 264 ”

= 0.8308.
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nyar 2

I;t2 = . 5
Myar 3 + Zi2R 5

] 1,029 (264)
1,029 (264) + 3,046 (2,071)

= 0.0413.

Models Hyy, ..., Hy.; 4 have assumptions as described in Section 2.4.5, but, for scheme B data,
recaptures from only two releases are available. The estimable parameters of interest are ¢,
$e1, Pr2, and p.o, with estimators, variances, and covariances as given for model Hy,; 4 applied
to complete capture history data (Section 2.4.4). The estimable parameter sets for models
Hag, ..., Hi.q 4 are all identical under scheme B. Again, computation of @, p;, is illustrated by
using data in Table 2.30.

ra 1 ZioRsa
$ = A — myp +
Ry |myz + 232 hi2
- 4,075 1 1,029 + 3,046 (1,000)
30,000 | 4,075 128
= 0.8275.
. Myale2
D2 =

Myaley + 22Ren

1,029 (128)
(1,029) (128) + (3,046) (1,000)

= 0.0414.

2.5.3.3. Testing between models. — In this section, a series of tests is presented to deter-
mine which model and estimators to use for a given data set. We cannot distinguish among all
models in the series Hay to H. 4, as only two releases are made for each group under scheme
B. On the basis of statistical theory given in Section 2.5.3.7, the following sequence of tests is
recommended.
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Test (1), model Hyy versus Hy, 4, is based on a contingency chi-square test with k - 3 df
computed from the contingency table

Mz Mgy T My Tis
Mes3 Mey toe Mek TcS

This test is equivalent to an overall chi-square (with k - 3 df) obtained by summing individual
1-df chi-squares from the 2 x 2 tables

myg zZy
My Ze

wherei = 3, ..., k - 1. These individual chi-squares are printed out by program RELEASE and
are labeled TEST 1.73, TEST 1.74, ..., TEST1.7k - 1. Sample values in these tables are gen-
erally smaller than in the analogous tables with scheme A or complete capture history data.

Test (2), model Hy, versus Hyg, involves a 1 df x? statistic computed from the con-
tingency table

T2 Riz-na Rz
Te2 Rcz -Te2 Rcz

It tests equality of ¢y, and @2, assuming ¢y = ¢y, = 3, ., k- L, and py = py, i = 3, .., k. In
output from RELEASE, this test is labeled TEST 1.R2.

Test (3), model Hyy versus Hy,, involves a 1 df x? statistic computed from the con-
tingency table

'y Z2 Ty
Mea Z2c2 T,

It tests equality of p;; and p,s, assuming ¢g = @, i = 2, ., k-1, and pg = py, i = 3, .., k.
This test is labeled TEST 1.72 in RELEASE.
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Test (4), model Hy, versus Hy4, involves a 1 df x*> computed from the contingency table

31 Ry -ma Ry
Te1 Rey-7e1 Ry

It tests equality of ¢; and ¢,;, assuming ¢y = ¢, i = 2, .., k-1, and p; = ps, i = 2, ..., k (sce
TEST 1.R1 in RELEASE). For the hypothetical example, one sees in Table 2.28 that this
table is

4,075 25925
4395 24,605

yielding a x? value of 29.63.

2.5.3.4. Goodness of fit tests. — Under scheme B, each entry in the data matrices
corresponds to a single capture history; thus, there is no finer partitioning of these data (into
subcohorts) on which to base tests of fit. Goodness of fit tests, based on the m-arrays my; and
Mmy;, are carried out as follows.

Test of Fit to Hy; 4 involves an overall x° statistic. To obtain this overall chi-square, one
first computes x? statistics x%, and x2,, each with k - 3 df from the respective contingency
tables

myy3 Mg tee Mgk Mme13 Me14 T M1k
my2s Mmyoy v Mok Mmeos Me24 ttt Meox

These tests are labeled TEST 2.C2 in RELEASE. Then “x? for fit to Hy.1 47 = X% + X% with
k-3 + k-3 =2(k-3)df. A significantly large, overall x* indicates that model Hyy 4 is not
appropriate.

Tests of fit to Hyg Hgp, and Hoyy are obtained by combining x? statistics for tests
between models and for testing fit to Hi 4. An outline follows.

(1) 2 for fit to Hag = x° for Hay versus Hey ¢ + X2 for fit to Hy.y 4, Withk - 3 + 2(k - 3)
= 3(k - 3) df. (This x® for fit to Hyy is the sum of TEST 2.C2 for treatment and control groups
plus TESTs 1.73, 1.74, ..., 1.7k - 1).

(2) 2 for fit to Hy, = x* for Hy, versus Hoy (TEST 1.R2) + 2 for fit to Hag, with 1 +
3(k-3) = 3k-8df.

(3) P for fit to Hyy = x? for Hyy versus Hy, (TEST 1.72) + 2 for fit to Hg,, with 1 +
3k -8 =3k-7df
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2.5.3.5. Comparing survival among treatment and control groups. — The comments
in Section 2.5.2.5 apply here, except that with scheme B data inferences concerning the
ratio ¢y; /¢ (or difference ¢ - 4y) are only possible for period 1 (i = 1).

2.5.3.6. Example. — The analysis of scheme B data is illustrated by using output
from program RELEASE for the hypothetical example. Part of the printout is displayed

in Table 2.30.

Table 2.30. — Selected results for analyses of the hypothetical example, collected under scheme B protocol.

m(j)
z(j)

2

m(j)
z(j)

nBL I

Observed Recaptures for Group 1
Treatment Group
RCi) m(i,j) r(i)
j= 2 3 4 5 6

30000 1029 238 1669 549 590 4075

1000 1M 73 17 27 128

1029 249 1742 566 617
3046 2925 1183 617 ]

Observed Recaptures for Group 2
Control Group
R(i) m(i,J) r(i)
j= 2 3 4 5 6

29000 1104 247 1832 571 641 4395

1071 13 75 19 29 136

1104 260 1907 590 670
3291 3167 1260 670 0

Sums for the above Groups
0 2133 509 3649 1156 1287
59000 2071 0 0 0
0 6337 6092 2443 1287
8470 264 0 0 0

Data type is scheme B capture histories.
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Table 2.30. — Continued.

oo e e amMameeeememeseeeeeeeeeeeseeseesemesesscsomeocoocoo-
| Maximum Likelihood Estimates under Model H2Phi

| 95% Confidence Intervals

| Parameter Estimate Standard Error Lower Upper

| memmmmmes e e s eeeeiaeaos
| Estimates for Group 1

] Treatment Group

| Phi(1 0.827529 0.066869 0.696467 0.958591

| p 0.041449 0.003579 0.034435 0.048463

] Estimates for Group 2

| Control Group

| Phi(1) 0.931746 0.073081 0.788507 1.074984

| p(2) 0.040858 0.003423 0.034149 0.047566

| Ratio of Survivals between Groups

| 95% Confidence Intervals

| Parameter Estimate Standard Error Lower Upper

| mmeeeemee e e e e
| s$(1,2,Phi(1)) 0.888149 0.100016 0.692118 1.084181

| Corr(1,2,Phi(1)) 0.000000

e eeeeemeeeeeaeeeeeeeeeeeeeseeeeeeesseemesesesesssssecseseeoocmnn
e eeaeeaseeseeeeeeseseseeeeeaseseesseesse—eseossscmmmmomomn-
| Maximum Likelihood Estimates under Model H2p

| 95% Confidence Intervals

| Parameter Estimate Standard Error Lower Upper

| mmeememes e e emcdceeee eeaeeeeees
| Estimates for Group 1

] Treatment Group

| Phi(1) 0.830798 0.047782 0.737145 0.924452

| p2) 0.041286 0.002686 0.036021 0.046550

| Estimates for Group 2

| Control Group

| Phi(1) 0.928307 0.053214 0.824008 1.032606

| p(2) 0.041009 0.002642 0.035830 0.046188

| Ratio of Survivals between Groups

| 95% Confidence Intervals

| Parameter Estimate Standard Error Lower Upper

| mmmmmee e s e e
| s(1,2,Phi(1)) 0.894961 0.020341 0.855093 0.934829

| Corr(1,2,Phi(1)) ~ 0.921665
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Table 2.30. — Continued.
LT e ittt +
| I
| Maximum Likelihood Estimates under Model H1Phi |
| I
] 95% Confidence Intervals |
| Parameter Estimate Standard Error Lower Upper |
| seesenesmemessesens sesesesises esesesieses oo !
| Estimates for Group 1 |
| Treatment Group |
| Phi(1) 0.831435 0.047607 0.738126 0.924745 |
| Estimates for Group 2 |
| Control Group |
|- Phi(1) 0.927648 0.052962 0.823843 1.031452 |
| Estimates for Pooled Groups |
| p€2) 0.041142 0.002474 0.036294 0.045990 |
I I
| Ratio of Survivals between Groups |
I I
| 95% Confidence Intervals |
| Parameter Estimate Standard Error Lower Upper |
| mmremeenseemesmseesesssessesesesses oessesesses sesseseseoses !
| s(1,2,Phi(1)) 0.896284 0.018040 0.860925 0.931642 |
| Corr(1,2,Phi(1)) 0.938042 |
T e T it +
L LR LD ettt ketd +
I |
| Estimates under Model HO |
I I
| 95% Confidence Intervals |
| Parameter Estimate Standard Error Lower Upper |
bbbl I
| Estimates for Pooled Groups |
| Phi(1) 0.878726 0.049456 0.781793 0.975660 |
| p(2 0.041142 0.002474 0.036294 0.045990 |
I I
L e bt +
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Table 2.30. — Continued.

TEST 1.75: Test of p(5) equal across groups,
assuming higher order parameters are equal across groups.

Fovowow $ommaaa +

0] 566 | 617 |1183

E| 559.8] 623.2]

c| o©.1] 0.1]

Fomomn Femmmen +

0| 590 | 670 |1260

E| 596.2] 663.8]

c] 0.1 0.1]

Fommann $ocenan +

1156 1287 2443
Chi-square=0.2542 (df=1) P=0.6141

TEST 1.T4: Test of p(4) equal across groups,
assuming higher order parameters are equal across groups.
$omaann $ocomnn +
0|1742 |1183 |2925
E|1752.0|1173.0|
c] 0.1} 0.1]
Feoceen- $rmeooe +
0]1907 1260 |3167
E[1897.0|1270.0]
¢} 0.1 0.1}
Fommana Foeaan +
3649 2443 6092
Chi-square=0.2751 (df=1) P=0.6000

TEST 1.T3: Test of p(3) equal across groups,
assuming higher order parameters are equal across groups.
Frmmnmn Frmmm—— +
0| 249 |2925 |3174
E| 244.7]2929.3|
c|] 0.1 0.0]
Fommnan R Lt +
0| 260 |3167 |3427
E| 264.3|3162.7|
c} 0.1} o0.0]
L Forecnn +
509 6092 6601
Chi-square=0.1543 (df=1) P=0.6944
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Table 2.30. — Continued.

TEST 1.R2: Test of Phi(2) equal across groups,
assuming higher order parameters are equal across groups.

$ummmnn $omemen +

o| 128 | 872 |1000

E| 127.5| 872.5|

c] 0.0] 0.0}

$ommmen $omomn= +

o] 136 | 935 |1071

E| 136.5] 934.5|

c| 0.0} 0.0]

$oeanan $oemmon +

264 1807 2071

Chi-square=0.0048 (df=1) P=0.9448

TEST 1.72: Test of p(2) equal across groups,
assuming higher order parameters are equal across groups.
$oceenn 4occmee +
0]1029 |3046 |4075
E|1026.2|3048.8]
c|] 0.0] 0.0]
Fommnn $ocmmnn +
0|1104 |3291 |4395
E|1106.8|3288.2]
c| 0.0] 0.0}
Fommm-- Fommm-- +
2133 6337 8470
Chi-square=0.0196 (df=1) P=0.8887

TEST 1.R1: Test of Phi(1) equal across groups,
assuming higher order parameters are equal across groups.
L Focmman +
0] 4075 |25925 {30000
E| 4307.|25693. |
c| 12.5] 2.1]
LT Fommme +
0| 4395 |24605 |29000
E| 4163.]24837.|
c|] 12.9] 2.2|
L dmmmm-- +
8470 50530 59000
Chi-square=29.6316 (df=1) P=0.0000
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Table 2.30. - Continued.

Goodness of fit test of recaptures partitioned by rows.

Test for Group 1
Treatment Group

TEST 2.C2: Test of row 1 vs. row 2
$ommoe $emmme- $o-meo- +o----- +
0] 238 ]1669 | 549 | 590 |3046
E| 239.0]1671.7| 543.2| 592.1|
c|] o0.0} o0.0] 0.1 0.0]
tommeo- Fommmn fememen $eceen- +
of 11 | 73 | 17 | 27 |128
E| 10.0] 70.3| 22.8| 24.9|
c| 0.1 0.1 1.5] 0.2]
Fomeena $ommee- L $ocmean +
249 1742 566 617 3174
Chi-square=1.9445 (df=3) P=0.5840

Test for Group 2
Control Group

TEST 2.C2: Test of row 1 vs. row 2
dommac- e #o-ceen $ommonn +
0| 247 1832 | 571 | 641 |3291
E| 249.7]1831.3] 566.6] 643.4]
c] o.0f o0.0] 0.0] 0.0]
treeme- $memmna $occeo- L R +
of 13 | 75 | 19 | 29 | 136
E| 10.3]) 75.7| 23.4| 26.6|
c] 0.7} o0.0] o0.8] 0.2]
N $omemn- S L +
260 1907 590 670 3427
Chi-square=1.8265 (df=3) P=0.6092

Cumulative result over both cohorts and groups
Chi-square=3.7710 (df=6) P=0.7076
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Under model Hyy, estimates of ¢, 4.1, and p, are &, = 0.8314, $.; = 0.9276, and
P2 = 0.0411. Note that these values are identical to estimates produced with complete capture
history and scheme A data (e.g., see Section 2.5.2.6). Similarly, corresponding standard errors
are the same under these three protocols. In contrast, ¢ is not estimable with scheme B data
but is estimable under the other two protocols.

Estimates under Ho, are &; = 0.8308, ., = 0.9283, p,, = 0.0413, and p,, = 0.0410.
Identical estimates for these same four parameters are obtained for data under scheme A and
the complete capture history protocols. This similarity is a result of the estimation of ¢; and
P2 depending on information relating to only the first two releases, and the three protocols are
the same with respect to releases 1 and 2 and their subsequent recoveries. Thus, for examin-
ing a one-period effect on survival, scheme B is equivalent to the more complex scheme A and
complete capture history protocols.

Estimates of ¢, ¢.1, P12, and p., are the same under Hyy and other more general
models in the sequence. Thus, only results for Hy, are shown in Table 2.30. To determine
which estimates or model to use for further inferences, we look at results for tests between
specific models and goodness of fit tests. Tests involving models more general than Hyy pro-
duce results under the scheme B protocol different from those for scheme A or the complete
capture history data. These tests are labeled TEST 1.75, TEST 1.74, and TEST 1.73 in Table
2.30. Note that not one of these tests yields a significantly large chi-square value, giving no
reason to reject any of the models Hyy, ..., Hsg. Also note that under scheme B, data required
for TEST 1.R3, TEST 1.R4, and TEST 1.R5 are not available because there are only two
releases for each group (in contrast, see Table 2.25).

The next step is to determine if a model less general than H, is adequate for these data.
In Table 2.30, one sees that TEST 1.R2, which tests H. 2 against the more general Hyy, yields
x* = 0.005 with 1 df (P = 0.94), suggesting that Hy is unnecessarily general. Then, TEST
1.72 for H,4 against Hy, results in x* = 0.02 with 1 df (P = 0.89), suggesting that Ho, is also
unnecessarily general. Fma]ly, TEST 1.R1 for H, versus H,4 yields x* = 29.63 with 1 df (P =
<0.001), indicating that H) is rejected in favor of Hy4. Note that tests comparing H,, versus
H,y4, Hygversus Hypy, and H, versus Hyy all produce identical results for data under the three
protocols. Again, this similarity results from the use in these three tests of information relat-
ing to only the first two releases.

Results for goodness of fit tests appear last in Table 2.30. The test of fit to Hgy is
obtained by summing x? values (and degrees of freedom) for TEST 2.C2 for treatment and
control groups (i.e., groups 1 and 2 in the output). Summing the chi-square values gives a chi-
square value of 3.771 with 6 df (P = 0.71).

@ for fit to Hyy = x? for H 4 versus Hgy (TEST 1.75) + )2 for fit to Hg (TEST 2) =
0.254 + 3.771 = 4.025 with 7 df.

x? for fit to Hay = x* for Hgy versus Hyy (TEST 1.T4) + 52 for fit to Hyy = 0275 +
4.025 = 4.300 with 8 df.

) for fit to Hoy = x? for Hyy versus Hay (TEST 1.73) + x2 for fit to Hgy = 0.154 +
4.300 = 4.454 with 9 df.
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x? for fit to Hy, = X for Hy, versus Hay (TEST 1.R2) + x2 for fit to Hay = 005 +
4.454 = 4.459 with 10 df.
x for fit to Hyg = x? for Hy, versus Hyp, (TEST 1.72) + 52 for fit to Hy, = 020 +

4.459 = 4479 with 11 df.

x? for fit to Hy = 2 for Hy versus Hyy (TEST 1.R1) + 2 for fit to Hyy = 29.632 +
4479 = 34.111 with 12 df.

Only the test of fit to H, produces a significantly large x* (P = <0.001), confirming that
model H,4 is the appropriate model for these data.

The H,4 estimates are used to make inferences about the treatment effect. (As
explained previously, these estimates will be identical to inferences based on scheme A or
complete capture history data for this particular example.) Thus, S = ¢;/¢.; = 0.896. This
result is labeled S(1,2,Phi(1)) in the output in Table 2.30. The 95% CI for S is seen to be 0.861
to 0.932.

2.5.3.7. Statistical theory. — Likelihoods used in deriving scheme B maximum likelihood
estimators, tests between models, and goodness of fit tests are presented here for the more
useful models in the sequence Ho, Hyy4, Hop, Hoy, ..., Hp1 ¢

A minimal sufficient statistic for model H,4 is
MSS = {r, 7c1, M2, 72y oy Mpa }

For k = 5, the likelihood under H,4 is proportional to

Pr{MSS} = [}5:11] [Pz + g [L-da(ps + qz,\z)]&“’h
% f:11] [¢c1(p2 + 42/\2)]'“ 1 -¢¢1(P2 + qz&)]&x-rd

'R- T2 3-73

x ,;’] ()" (1-2)"

% 77,1 P2 N qar2 2
M2 (P2 + 92 P2t 42k

(ra+zz Ps ™3 gagaps ™ (qsbsqadaps )"
M3MaMms| | ps + qshs P3 +qsks | Ps + qsks ’
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where
A =0 and Ay =, (@; ""%‘f\') i=2.,k.

Alsonote thatr; = T; andrg + z5 = Tas.
A minimal sufficient statistic for model H,, is
MSS = {rtl’ Te1, My, Moo, I'2y M 3, ...y m.k-l} .

For k = 5, the likelihood under Hy,, is proportional to

3\

PriMss} = [I:ff 1@z + @)™ [1- b1 ez + gead)] ™

7

4

Rc Te1 1 -l
X ,.011] [#e1(Pez + ge222)] [1 - er(Pe2 + qczl\z)]}?c

2 02 @2

N ru ™ Gi2)2 e
Diz * %2/\2 D2 + Gk
’ cl ]

me3 ch/\z %3
Pe2 t %2/\2 DPe2 + Ge2de

((ra+z4 Ps ™ qagaps ™ [qsbsqaders |
M3M M5 | | ps + gshs Ps + g3l Ps + g3l

A minimal sufficient statistic for model Hy, is

MSS = {n, re1, Mia, Mea, Nz, Teo, M3y ey Mgy }
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For k = 5, the likelihood is proportional to

2 . .
PI'{MSS} = H [f:;] &;m (1-&;)&1"“ [f::] ,\c‘,'d (1 'Aci)RCl-rd

t=1

v (71 Pe2 " Ge2e2 2
M2} | Pez + Geak2 P2 + Q22

X (7e1 Pe2 - geda )%
Me2| | Pz + GeaAe2 De2 + Ge2e2

\

< (ra+z2 Ps ™3 qagaps ™ (qsbsqataps )T
M3MaMms| | ps + qsds P3 + 43k P3 +qsks ’
where
A1 = (P2 + qiak2)
A2 = da(ps + g3ls) ,
A1 = $e1(Pe2 + Ge2he2)
and

Az = $e2(Ps + g3ds) -

A minimal sufficient statistic for model Hy 4 is
MSS = {rﬂ, Te1s Te2y Te2y M2, M2y ooy Mg, mc'k-l} .

For k = 5, the likelihood is proportional to

Pe(Mss) = T 11 [R] A (-2

v=t,c i=1

« TI Tv1 DPv2 e Gv2Mv2 ad
vzte | ™2} | Po2 + Qu2to2 Doz + Gu2re2

X[ Tyo + Zy2 ] [ k Dy3 ]m.; [ q03¢vspu4 ]m“ [QU3¢vaqu4¢ud’vs ]m.s }

My3 Myg M5 | | Pys + Gu3tes DPv3 ¥ Guaha Dv3 + Quahe3
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The following examples represent testing between models.

(1) Hg versus Hy4 (TEST 1.R1) is based on

3

which tests equality of ¢y (pr2 + qi2)2) and ey (P2 + geade2). Ifallp, =p;, i=2,..,kand
all $; = ¢, i =2, .., k- 1, then the equality of ¢; and ¢, is being tested. Here MSS H, =
{r1,72, ma,..,m;,}, aminimal sufficient statistic under H, for scheme B.

PTHO{MSSHM, I MSSHO} =

(2) Hyy versus Hy, (TEST 1.72) is based on

=]

fps =p;, i=3 .,kand ¢, =

Pry, {MSSy,, | MSSy,,} =

De2 De2

and .
Piz t Gi2ko Pe2 + Ge2Ae2
¢, i=2,..,k-1,thenp,; = p,, is being tested. Note that T, = r,;.

which tests equality of

(3) Hgyp versus Hyy (TEST 1.R2) is based on

)

which tests equality of ¢2(pes + grsks) and geo(Pes + geades). Again, equality of ¢y, and @5 is
testedif p,; = p;, i = 3, .., kand ¢, = ¢, i = 3, ..., k - 11is true.

PI'H”{MSSH” I MSSHQ, } =
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(4) Hay versus Hiy 4 (TESTs 1.73 to 1.Tk - 1) involves pooling the remaining 1-df x
tests to give a test based on

n2 + 2 Tea t Ze2
Myg * " Mypa | [Me3 " Mega

rstzs ]

PI'H”{MSSH)‘_M. l MSSH” } =

mg «~** Mgy

This multiple hypergeometric can be factored into the following representation:

i=s [T..-]

m;

The separate, simple hypergeometric distributions for i = 3 to k - 1 correspond to TEST 1.73
through TEST 1.7k - 1, respectively.

2.6.- Summary of Models and Protocols

Several models do not exist under certain protocols, just as some tests do not exist, or
cannot be computed, under certain protocols. Intensive information on available tests are
presented in Tables 2.3 and 2.4. A summary of the model sequence, Ho, Hyg, ..., Hya g, is
given in Table 2.2. Finally, a summary of models that exist under each protocol is given for
completeness.



2.6. SUMMARY OF MODELS AND PROTOCOLS

Protocol

First Unknown Complete Partial CH

Model CH CH CH Scheme A Scheme B
Hg X X X X X
Hig X X X X X
Ha, X X X
Hayy X X X
Hs, X X
Hyiig X X X
H'y X

X
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